SKYLINE2GPS: Localization in Urban Canyons using Omni-Skylines
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Abstract— This paper investigates the problem of geo-
localization in GPS challenged urban canyons using only
skylines. Our proposed solution takes a sequence of upward
facing omnidirectional images and coarse 3D models of cities
to compute the geo-trajectory. The camera is oriented upwards
to capture images of the immediate skyline, which is generally
unique and serves as a fingerprint for a specific location in a
city. Our goal is to estimate global position by matching skylines
extracted from omni-directional images to skyline segments
from coarse 3D city models. Under day-time and clear sky
conditions, we propose a sky-segmentation algorithm using
graph cuts for estimating the geo-location. In cases where the
skyline gets affected by partial fog, night-time and occlusions
from trees, we propose a shortest path algorithm that computes
the location without prior sky detection. We show compelling
experimental results for hundreds of images taken in New
York, Boston and Tokyo under various weather and lighting
conditions (daytime, foggy dawn and night-time).

I. INTRODUCTION AND PREVIOUS WORK

The skyline has long been a source of fascination fc
photographers, thought to identify the city as uniquely a
a fingerprint. In this work, a step further has been taker
to mvest.lgate It§ uniqueness on omni-images for any giveflg. 1. on the top we show upward facing images of skylines. In the
geospatial location. Such an approach has several interesiddle, we show the matched skylines using the proposeditaigs. In
ing properties compared to existing techniques. First. tH&e bottom, we show the corresponding geo-locations onabériages.

St . . . ' est Viewed in Col or]
skyline is compact, unique and extremely informative about
a location. Second, it is less prone to occlusions (trees,

lampposts, cars and pedestrians) and lighting variatioas t q he other hand. th ith
other features. The main reason to use omni-images instd§gtUre correspondences. On the other hand, the ones withou

of perspective ones comes from the fact that the stabililgSlng a motion_ model rgconstruct the' scene coarsely using
of the underlying pose estimation problem increases wit D reconstruction algorithms and estimate the pose of the

the field of view of the camera. It has also been proveﬁamera w.r.t the coarse model. In contrast to many methods

formally that omni-directional cameras can give much bette" herle both thle 3D reconst_ru"ctlon and I?]CZI'Za“On are sblvle
accuracy in motion estimation than perspective ones [§], [33'Mu/taneously or sequentially, our method attempts toeso

In the case of small rigid motions, two different motions caPnly the localization problem assuming that a coarse 3D
yield nearly identical motion fields for classical perspeet Model of the city is already given.
cameras, which is not the case for omnidirectional images. !N the last few years, there has been an increasing interest
In robotics and vision community, several promising siin inferring geolocation from images without using SLAM-
multaneous localization and mapping (SLAM) algorithmsStyle algorithms [25], [33], [13], [10]. Several recent igea
have been developed in the last three decades and detafi@$ed localization approaches have been proposed using
surveys are available [8]. Existing techniques in sLAMeature matching algorithms. The general idea behind nfost o
can be classified into ones that use a motion model [zqhese approaches is to find the closest image to a given query
[4] and the approaches free of motion models [20], [26]picture in a database of GPS-tagged images. Robertson and
The basic idea in using a motion model is to smooth theipolla [25] showed that it is possible to obtain geospatial

trajectory of the camera and constrain the search area f@falization by wide-baseline matching between a new image
from a mobile camera and a database of rectified building

*joint primary authors facade images. Zhang and Kosecka showed accurate results




in the ICCV 2005 computer vision contest ("Where amare not aware of any work in vision which synthesizes omni-
I?") using SIFT features to search the closest images indirectional images from 3D models for pose estimation. The
database of GPS-tagged images [33]. Jacobs et al. [13] ussehthesis is done using a pixel shader program implemented
an interesting approach to geolocate a static outdoor webcan a Graphics processing unit (GPU) for generating a large
by correlating its images with satellite weather imagekgta number of fisheye images in real time.
at the same time of day or with other webcams’ images fagkyline matching using graph cuts and robust chamfer
which the locations are known. The underlying idea is thadistance. We propose a graph cuts based algorithm em-
there is a consistent pattern in the manner in which thesdded with parameter learning for robustly detecting sky
images vary over time. Hays and Efros [10] used milliongn omni-directional images. The most closely related work,
of GPS-tagged images from the web for georeferencing which already gives excellent results, is the geometriellab
new image. In order to match the query image with a largiag problem to classify a given image into sky, buildings and
collection of images (6 million images), several featureground [12]. After detecting the sky, the skyline matchisg i
based on color histograms, texton histograms, line festuralone using the chamfer distance embedded in a RANSAC
gist descriptor, geometric context (labeling of the imagéamework.
pixels into sky, buildings and ground), etc. are used. Thgkyline matching using shortest path algorithm.Through
use of time-stamped photographs has also proved beneficiakigorous study we found that the sky detection method
for geo-localization [14]. proposed will not be robust for all weather conditions. In
In contrast to most of these approaches that leverage erder to handle difficult conditions due to weather and
the availability of these georeferenced images, the aghroalighting changes we also proposensax-minoperator and
presented uses coarse 3D models downloaded from the wabshortest path algorithm to compute the location. Here we
A large repository of coarse 3D models already exists fafelax the requirement of sky-detection for geo-localizati
major cities. There exist a few more related approaches th@h the other hand, we define a cost function that validates
use 3D models and/or omni-directional cameras for geolocahe various skyline proposals from the 3D model.
ization [16], [28], [18], [31], [5]. Koch and Teller propode Experiments. We show promising experimental results for
a localization method using a known 3D model and a widgundreds of images captured under various weather and
angle camera for indoor scenes by matching lines from thgjhting conditions in different cities. We also show thatro
3D model with the lines in images [16]. In contrast to theiimethod is capable of outperforming GPS measurements in
technique, this work relies on the skylines for geolocaiora urban canyons.
of outdoor scenes. Although, the idea of using the hO”ZODegeneracy analysisFinally we show a minimal solution
or the skyline has been explored earlier in [28], [18], [1lfor 3DOF pose estimation using the minimal number of
our approach is different from them in several ways. Ijequired features (points and lines) on the skylines. This
[28] a human user input is required to extract the skylingheory highlights the important connections of the 2D-3D
whereas this work uses an automatic graph cuts algorithiipgistration problem to our proposed skyline-matching and

In addition, we also propose a method which does not neggkarly points out the possible degenerate cases and cdrity
prior sky detection. In [28] a hash table is precomputed tgych cases in practice.

match the unwrapped horizon with the 3D model, whereas
the algorithm presented in this work synthesizes fisheyg calibration and Fisheye Synthesis
images on the fly for matching. This relaxes the requirement
of pre-processing and storing millions of synthetic skgtin
Our work is closest to [18], [1], where an omni-directional
infrared camera is used instead of an omnidirectional kasib
camera or a prior sky detection is necessary for the algorith
to work. This paper is an extended version of our previou
workshop paper [21].

II. OVERVIEW OF OUR APPROACH

(b) (©)

We briefly explain the various building blocks of our geo-
Ioca.lllzat.lon syste_m. . . Fig. 2. (a) A fisheye image with two pixels marked. (b) and (c) show the
Calibration and fisheye synthesisIn this work we used a projection rays corresponding to the two pixels from the ispiterical set
fisheye lens with a field of view of about 183However, of rays computed using generic calibration.
we would like to propose a method that could work with
all kinds of omni-directional cameras. For that reason, we We use a generic imaging model to calibrate our fisheye
chose to use a generic calibration approach which treatg evdens [23]. According to this model, every pixel in the omni-
camera as a mapping between a pixel and its correspondiimgage is mapped to a 3D half-ray in space. This mapping
projection rays. It was recently shown that the generican be computed using images of calibration grids. It has
calibration algorithm outperforms standard parametrie agpeen shown recently that the use of generic imaging models
proaches in the case of very high distortions [23], [7]. Weallows very precise distortion correction [23].



In Figure 3 we show the various stages in synthesizing
a fisheye image. In order to synthesize a fisheye image we /&
first generate five binary perspective images, correspgndin
to the views in the hemicube shown in Figure 3(c). As our
algorithm uses coarse 3D models without any texture, we
generate a cubemap simply by rendering a 3D model colored o
entirely in white; the resulting binary image is black in sky (@) (b)
regions. We then use our calibrated ray-table to map tr]:elg 4. (a) Original image. (b) Likelihood for the sky. (c) Likelibad for the

cubemap to a fisheye image, as shown in Figure 3(c). The; of the image. Red and Blue correspond to higher and ldikelihoods
black region is the predicted shape of the sky. Some of thespectively[ Best Vi ewed in Col or]

fisheye images synthesized at different places in a 3D model

of Boston’s financial center are shown in Figure 3(d).

As the previous section indicated, our ray-calibrated vied! ozr ?roble:n,b (TaCh kOf thzse vanak;lesh cou_ld lrepre.:ﬁ nt
synthesis has the advantage that it does not “bake in” errdf€ poolean 1abels (sky and rest) o the pixels In the
that would arise from using a parametric lens model. Irqmn|Fj|rect|onaI IMages. We use quadratic pseudo-boolean
addition, a pixel shader program is implemented in GPU thCF'OnS for representm_g our energy funct_lon. These are
generate these fisheye images at a very fast rate. This allo()\fit’h'ng but energy functions of boolean variables that map

us to generate accurate fisheye images on the fly; there is oolean vector to a real value and.thus the name psgudo—
need to store images in a large database boolean. Le® denote the parameters in our energy function.

The parameter vectof consists of the unary terms;,,

and the pairwise term8;;..;, wherei,j = 1,2,..,n and

a,b € B. These parameters are also referred to as unary and
pairwise potentials. In contrast to many vision algorithms
where these parameters are manually fixed, we compute them
automatically. The unary parametéf, can be seen as a
pseudo-boolean functiofi: B — R that gives the cost when

x; = a. Similarly, a pairwise parameté;.,, is a quadratic
pseudo-boolean functiorf : B> — R that gives the cost
whenz; = a andz; = b. The function mapping partitions

(@) (o) ()
@@@@@@ to energies is then
(d)

Ex|®) = Z {0i0(1 — @i) + 01 ()} +

eV
Fig. 3. Our algorithm to construct a fisheye image. (a) shows the 30eho
of an urban scene where we synthesize a fisheye image. (b)ubeenap Z {91'.7':,00(1 - xi)(l - xj)
generated from a given point in the 3D model. (c) Fisheye enagated (i,j)€E

from the cubemap. (d) Examples of skylines extracted frdmyfsimages.
P- (@) Bxamp Y esimag +0ij:01(1 — @) + Oijaowi(l — ;)

+0ij117i75} 1)

B. Sky Detection where V' is the set of vertices an@ is the set of edges
Given an omni-directional image, which is circular in thein the weighted grapiG = {V, E}. Our goal is to learn
case of a fisheye model, we want to classify the pixels intthe parametersd{s) automatically for our problem. We
sky and rest. This can be seen as a segmentation probleptimize the discriminating power of the model by estimatin
with two labels. The features that can be used for thiparameters that maximize the difference between ground
segmentation can vary from simple RGB colorspace comruth labellings and all other labellings of a small number
ponents to a wide variety of features like gradients, shitaig of manually labeled examples. Our method is similar to
lines, vanishing points, etc. Our approach has two modulefie maximum-margin network learning method using graph
a parameter learning method and a discrete optimizati@uts [30]; we generate “near-miss” labelings, then estnaat
algorithm. In our problem we use graph cuts, which is botparameter vector that maximizes the margin separating true
fast and highly successful in various vision problems likéabellings from the near misses in a convex optimization.
stereo, segmentation, and image restoration [29]. An gner§lote that this parameter learning algorithm could also be
function, involving binary variables in unary and pairwiseextended to multi-label variables by encoding them using
terms, is represented using a weighted graph whose minimweveral Boolean ones [22].
cut (computed using the max-flow algorithm) yields an In our current implementation we obtain the unary like-
energy-minimizing partition of the variables. lihood for sky and rest using their color values. We first
We briefly introduce the energy function, whose paramestimate a Gaussian model for the classes sky and rest and
eters we are interested in learning. Let ¢ B = {0,1} compute the mean and covariance using manually segmented
wherei = 1,2,..,n, represent boolean random variablesground truth images. For a new test image we obtain the



unary likelihood by computing the Mahalanobis distance t®. Skyline matching using shortest path algorithm
the sky and non-sky classes as shown in Figures 4(b) and ()i contrast to the earlier approach of sky detection using
In our experiments we used about 20 manually segmentgehph cuts and skyline matching using chamfer distance, we
images for trajning. We will reformulate our energy functio employ a joint strategy which proposes skylines from the
by decomposing the unary parametérs as follows: 3D model and scores the matching with the omni-images.
Oia = 07 + 10" @ The main idea is very simple. Generate a lot of proposal
skylines for various poses using the 3D model as described
Once we have the likelihood coktfor every node the unary iy section II-A. For each proposal we define a cost function
parameter®)’ and ¢;, are dependent only on the label \yhich measures the similarity with the skyline in the omni-
Similarly we assume that the pairwise parametgfs, are jmage. It is important to note that this method does not need
also independent of the associated nodasd j and replace 3 prior sky detection and is hence relatively more robust tha

them by6,;. Due to the problem nature, we assume that thghe previous algorithm using graph cuts. The main steps are
pairwise matrix is symmetric. i.ely; = 610. We denote the shown in Figure 6 and explained below:

new parameter vector which we want to learn@as
o=[06 6 67 0\ 6o 6o 611 ] 3)

The parameter vectd® is then estimated via the standard
convex program for linear SVMs, using vectors of unary
and pairwise statistics from true labellings and near mis
labellings as positive and negative examples. In order 1
guarantee that the estimated model supports optimal infe
ence, we augment the convex program with a constraint ¢
the pairwise terms in the parameter vector that guarantcjf
submodularity. In the binary case the constraint is simply

(4)

The submodularity condition is the discrete analogues ¢
convex functions in continuous domains.

C. Skyline Matching

First we segment the sky in fisheye images and obtaing. 6. (a) The max-min operator idea. (b) Example of a fisheye image.
the skyline as shown in Figure 7. The predicted skylinet) Edge map on the fisheye image. (d) max-min operation offitheye
corresponding to different locations in the 3D model ar(g]:?:él(?nshortea path result. (f) The synthetic skylit best matches
obtained using the method described in section Il-A. Since

the real-image segmentation and the predicted images are, \ye detect Canny edges on the original omni-image.
both high quality, a simple chamfer distance suffices to We compute the max-min operator for every pixel in
score the skyline match. During the chamfer matching, we 4 image. For every pixep in the image, the max-
vary the pose parameters of our virtual fisheye camera and ;i operator computes the ratio of the distance to the
obtain new skylines at various locations in the 3D model. 5 thest edge pixel w.r.t the nearest edge pixel as

Boo + 011 < 2001

The first skyline is manually matched for initialization. &h
subsequent ones are matched by searching for various pose
parameters near the first skyline. By embedding the chamfer
matching in a RANSAC framework we can handle small
occlusions, e.g. due to trees as shown in Figure 5.

Fig. 5. Left: The skyline detected in a fisheye image with incorrect
chamfer matching. Right: Robust chamfer matching using S for °
correct skyline matching.

shown below:

dmaa:

M(p) = . 5)
Note that this operator highlights the edge pixels on the
skylines and suppresses other unimportant edge pixels.
In other words, this emphasizes the boundaries close to
a large free space, i.e. sky in this case. Such free space
cues have been used for alignment of 3D point clouds
to overhead images by analyzing the possible camera
rays from a given point [15].
A proposal skyline is generated from the 3D model and
superimposed on the omni-image.
We dilate the proposed skyline into an area of interest
with an inner boundary and an outer boundary, as shown
in Figure 6.
Next we use théntelligent scissorsnethod to compute
the matching cost [19]. The basic idea is to construct a
graph using nodes that correspond to only the pixels



inside the two boundaries. The edges between tteatellite reception (because of tall buildings). By conmmar
nodes have weights which are inversely proportionahe heights of 20 buildings in our 3D model with the ones
to M(p). Strong max-min values induce smaller edgén Google Earch a discrepancy up to 12 meters is measured.
weights. We compute a circular shortest path insid®ur algorithms were able to achieve good results even with
these boundaries. The cost of the shortest path increasegh imprecise 3D models. In the supplementary material we
with the number of discontinuities. In other words, ashow our geo-localization results for various images taken

correct proposal enables us to find a shortest path witkew York, Boston and Tokyo.
no discontinuities. In practice, occlusions, inaccurdde 3
models, discrete sampling issues in the search spagz
produce discontinuities even in the correct path. Ho ,,;

ever, the lowest cost shortest path is always very clog
to the actual skyline.

tions to a wide variety of segmentation techniques usi
shortest path and graph cuts [32], [11], [27], [9]. Efficien
algorithms are possible using dynamic versions of grapé, cu
shortest paths or even planar graph cuts.

Ill. EXPERIMENTS

Boston and Tokyo as shown in Figure 10 (a,b,c). In all o
real experiments we used a Nikon Coolpix E8 Fisheye le

our experiments in Figure 9. These are plane approximatf
coarse models of cities.
The day-time images taken in Boston were evaluated wi
the sky detection (See Figure 7) and chamfer matchirj®
algorithm. The sky detection algorithm failed for Tokyol
data (due to the presence of trees) and night time imagf
taken in New York. We used the more robust algorith
(shortest path) for the New York and Tokyo images. Th
geo-trajectories for the images captured in Boston, Nevk Yo
and Tokyo are shown in Figure 10. The images were captured
approxmgtely atan m_terv‘_al of 5'meters. We search for all E:ght time. In the middle, we show the max-min features fyghhg the
DOF for fine pose estimation using graph cuts/shortest patsbundary near an open region. On the right, we show the meltshgline
The accuracy of the algorithm is evaluated by comparing ith minimum cost in the shortest path algorithm.
with a commercial GPS unit "GarminiNi 255W”. Upward
facing fisheye images and GPS measurements were collec
for 30 locations in a street in the financial district in Basto
The average height of the buildings in this street is arou
50 meters and the average width is 15 meters. The imag
were collected at the boundary between the sidewalk ai
the road. We register the real trajectory (boundary betwee
road and sidewalk), GPS measurements and our localizati
results on an aerial image obtained from Google Eartl
In order to compare the result of our algorithm the aerie
map of the 3D model is registered over Google Earth by
manually clicking corresponding points and by computingfig. 9. 3D model of Boston’s financial district: One of the coarse 3D
the transformation matrix with a least square solution. Th@odels used in this paper.
mean error for the GPS is 29 meters and the mean error
for our algorithm is 2.8 meters (cf. Figure 10). One of the IV. DEGENERACYANALYSIS USING 2D-3D
reasons for the degraded performance of GPS is due to poor REGISTRATION

*www.3dcadbrowser.com sells five 3D models for a price86$ for

g. 8. On the left we show examples of fisheye images captured during

The skyline-based geo-localization is nothing but a 2D-

several major cities of the world 3D registration using points and lines that are disguised in



(d)

Fig. 10. On the top (a,b and c) we show the geo-trajectories obtained f
100’s of images using our algorithm. In (d) we show a compariwith the
GPS.

to find the minimal solution. First, we assume that the omni-
camera is always facing upward along tle axis. Small
misalignments could be easily corrected using vanishing
points [17]. Second, we assume that the images are all
taken at the same height (small variations are negligible
compared to the skylines). As a result there are only 3
degrees of freedom (DOF) between two consecutive images.
We show a simple pose estimation algorithm that could
be used to compute these 3DOF between two consecutive
images. Accordingly the rotation and translation matrimes
shown below:

Ryt Rip O T,
R=|( “R Ry o |T=[ 1 )
0 0 1 0

As shown in Figure 11(a), the skyline is computed for the
left image using either the graph cuts or the shortest path
algorithm. Our goal is to obtain a location for the skyline in
the right image. Lep, andq; be two image pixels on the left
image and their matching pixels in the right image are given
by p» and¢,. The 3D points corresponding {9 andq; are
given by P andQ respectively. These 3D points are already
known from the skyline matching in the left image. Now
we have 3D-2D correspondences between the 3D model and
pixels on the right image - this can be used to get the pose
for the right image. Each point correspondence will give a

a piecewise non-linear curve in omni-images. If one realizecollinearity constraint, which in turn provides two equoais.
this connection, it becomes obvious that the theory foWwe briefly explain the formulation of this constraint. As

minimal pose estimation governs the limitations/degetiesa

shown in Figure 11(b), the camera center for the right image

of the proposed algorithm. We briefly show the minimalCs, a point on the projection ray g, given by Cs + d;
solution for pose estimation using 2D-3D point/line correand the 3D pointP are all collinear. Accordingly ang x 3
spondences. We make few reasonable assumptions in ordabdeterminant of the following matrix vanishes.



SIFT

Cao Caaz+ d:l,z R11Py + R12Py + T, matching
Cay  C2y+diy —Ri2Pr+ RuPy + T, @
Cy. Ca.+di. P.

1 1 1

Although we obtain four equations by removing one row
at a time, the total number of independent equations is onl'
two. By using the collinearity constraint for the secondnpoi
@, we can obtain two other equations. Using these equatior
it is straight forward to compute the 3DOF.

Similarly it is possible to identify two coplanarity con- Line matching
straints from a single line correspondence. Letand £, be @
two projected image lines on the left and the right images
respectively. Let the corresponding 3D line be given by P Q

L,L,, the 3D location of it is already known using the
skyline matching in the left image. As a result, the seconc
camera cente€, two points on the projection rays fdr,
and L, given by Cy + cfl and Cy + J; respectively, and
two arbitrary 3D pointsL; and L, are all coplanar. This
results in two coplanarity constraints using the quadtsple
[Co,Cy + dy,Co + do, Li] and [Ca, Cy + di, Ca + da, Lo
respectively. We show the coplanarity constraint for thet fir

M,

1

quadruplet: (& Ty ¢y o g
B . (b) (©)
Co Cr+die Cp+dae Ri1Liz + RioL1y + T i ) ] )
Cy Co+diy Co+day —RizLig+ RitLiy +7Ty ®) Fig. 11. In (a) we show the point and line matches between two images
Cs Cs+di, Co+ds, L1, where the skyline is matched for the left one. In (b) we shevivito camera
1 1 1 1 positions for the two images shown above along with the ptaje rays

. . . corresponding to the two point matches. In (c) we show thgeption rays
The coplanarity constraint makes the determinant of th@rresponding to the line matches that lead to coplanarigstraints (See

above matrix to vanish. In the same way, we can obtaitext).

two equations from the second 3D ling; M>. Overall, it

is possible to get the pose from two feature correspondences | L )

(2 points, 2 lines, 1 point and 1 line). with a good initialization, the skyline only needs to be

The degenerate cases are listed below: unique locally _ _ _
. . . o Sharp turns in the skylines - This sometimes degrades
« Less than two distinct points on the whole skyline. . N
: . L . . the performance a little as shown in Figure 12.
« Only one line with no distinct point on it.

. X - . o Short buildings - Our preliminary experiments suggest
: Only two parallel lines with no distinct points on them. that the method seems to work better for short buildings
It is easy to observe that such cases are extremely rare 10 han tall ones because the skyline captures more lines
happen even in perspective images. The use of omni-images 4,q points.

makes it almost impossible. However, the real problem is
to obtain the 2D-3D correspondence, which can always V. DIsScUssION
be improved further as it belongs to the class of NP-hard Existing approaches for geo-localization use either a
problems. Since the degenerate cases are very rare to 0OC&|rAM or recognition based techniques. This work could be
the use of better shape matching algorithms may robustif§een as a method that overlaps with both these paradigms
the proposed algorithms in the following difficult condit®  and extends to formulate the geo-localization problem as a
o Missing buildings - The algorithm can still work as shape matching one. This enables us to apply the existing
shown in Figure 12(c). wide variety of discrete optimization/shape matching ltssu
o Inaccurate 3D models - Our experiments were all tested this problem. Our experiments clearly demonstrate that
using coarse 3D models which were plane-based aiiidis possible to outperform GPS measurements in urban
having a height discrepancy of up to 12 meters. canyons, which are known to be extremely problematic for
o Occlusion from trees - A small amount of occlusioncommercial GPS units.
can be easily handled with a RANSAC based chamfer The main limitation of the proposed method is that the
matching (See Figure 5) although the sky detection itsefikylines are sometimes very far away from the camera.
fails as shown in Figure 12. The shortest path algorithrithis affects the overall accuracy of the geo-localization.
can handle larger occlusions from trees. However, the other advantages from skylines are numerous:
o Repeated patterns in the skylines - The approach wilasy recognition due the presence of open space or blue
fail only if the patterns repeat between two consecutiveky, fewer occlusions from street signs, pedestrians,, cars
images. Note that while estimating the geo-trajectorgtc. are so overwhelming that such an approach is still very



Fig. 12. A few failure cases for sky detection and shortest path #lywms. (a) and (b) show the errors in sky detection due to twusion from sun and
trees. (c) The shortest path algorithm can handle and ptetie missing buildings as shown. Mismatches in some paheo$kyline while the rest matches
very precisely, indicate changes in the scene. In (d) we ghevshort circuit problem when the boundaries for the stsirfmath algorithm overlap. This
can result in degradation in the performance of the algaritvhen the skyline takes sharp turns.

beneficial. In this work, our goal was to investigate the usgo]
of only skylines for geo-localization and we believe that it[ll]
is already very good for a localization of about 2 meters.
To improve the localization to a few centimeters we can use
other vision features: vanishing points [17], interestnpoi 12
matching/tracking between consecutive frames [33], [25]13]
3D points reconstructed using SfM can be registered Witﬁ 4]
the building walls [24], SLAM algorithms [16], [31] and
maybe even priors learned from image databases [10]. It ]
important to note that the current GPS systems have been
improved and robustified for several years by addressirgg]
various complicated issues that even include the theory ﬁfﬂ
relativity. [18]

In a few years, we believe that it will be possible to build
an inexpensive, robust and accurate vision based GPS.
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