
SKYLINE2GPS: Localization in Urban Canyons using Omni-Skylines

Srikumar Ramalingam1∗ Sofien Bouaziz2∗ Peter Sturm3 Matthew Brand1
1Mitsubishi Electric Research Lab (MERL), Cambridge, MA, USA
2Ecole Polytechnique F́ed́erale de Lausanne (EPFL), Switzerland

3INRIA Grenoble – Rĥone-Alpes and Laboratoire Jean Kuntzmann, Grenoble, France
{srikumar.ramalingam,brand}@merl.com, sofien.bouaziz@gmail.com, peter.sturm@inrialpes.fr

Abstract— This paper investigates the problem of geo-
localization in GPS challenged urban canyons using only
skylines. Our proposed solution takes a sequence of upward
facing omnidirectional images and coarse 3D models of cities
to compute the geo-trajectory. The camera is oriented upwards
to capture images of the immediate skyline, which is generally
unique and serves as a fingerprint for a specific location in a
city. Our goal is to estimate global position by matching skylines
extracted from omni-directional images to skyline segments
from coarse 3D city models. Under day-time and clear sky
conditions, we propose a sky-segmentation algorithm using
graph cuts for estimating the geo-location. In cases where the
skyline gets affected by partial fog, night-time and occlusions
from trees, we propose a shortest path algorithm that computes
the location without prior sky detection. We show compelling
experimental results for hundreds of images taken in New
York, Boston and Tokyo under various weather and lighting
conditions (daytime, foggy dawn and night-time).

I. I NTRODUCTION AND PREVIOUS WORK

The skyline has long been a source of fascination for
photographers, thought to identify the city as uniquely as
a fingerprint. In this work, a step further has been taken
to investigate its uniqueness on omni-images for any given
geospatial location. Such an approach has several interest-
ing properties compared to existing techniques. First, the
skyline is compact, unique and extremely informative about
a location. Second, it is less prone to occlusions (trees,
lampposts, cars and pedestrians) and lighting variations than
other features. The main reason to use omni-images instead
of perspective ones comes from the fact that the stability
of the underlying pose estimation problem increases with
the field of view of the camera. It has also been proven
formally that omni-directional cameras can give much better
accuracy in motion estimation than perspective ones [6], [3].
In the case of small rigid motions, two different motions can
yield nearly identical motion fields for classical perspective
cameras, which is not the case for omnidirectional images.

In robotics and vision community, several promising si-
multaneous localization and mapping (SLAM) algorithms
have been developed in the last three decades and detailed
surveys are available [8]. Existing techniques in SLAM
can be classified into ones that use a motion model [2],
[4] and the approaches free of motion models [20], [26].
The basic idea in using a motion model is to smooth the
trajectory of the camera and constrain the search area for

∗joint primary authors

Fig. 1. On the top we show upward facing images of skylines. In the
middle, we show the matched skylines using the proposed algorithms. In
the bottom, we show the corresponding geo-locations on aerial images.
[Best Viewed in Color]

feature correspondences. On the other hand, the ones without
using a motion model reconstruct the scene coarsely using
3D reconstruction algorithms and estimate the pose of the
camera w.r.t the coarse model. In contrast to many methods
where both the 3D reconstruction and localization are solved
simultaneously or sequentially, our method attempts to solve
only the localization problem assuming that a coarse 3D
model of the city is already given.

In the last few years, there has been an increasing interest
in inferring geolocation from images without using SLAM-
style algorithms [25], [33], [13], [10]. Several recent image
based localization approaches have been proposed using
feature matching algorithms. The general idea behind most of
these approaches is to find the closest image to a given query
picture in a database of GPS-tagged images. Robertson and
Cipolla [25] showed that it is possible to obtain geospatial
localization by wide-baseline matching between a new image
from a mobile camera and a database of rectified building
facade images. Zhang and Kosecka showed accurate results



in the ICCV 2005 computer vision contest (”Where am
I?”) using SIFT features to search the closest images in a
database of GPS-tagged images [33]. Jacobs et al. [13] used
an interesting approach to geolocate a static outdoor webcam
by correlating its images with satellite weather imagery taken
at the same time of day or with other webcams’ images for
which the locations are known. The underlying idea is that
there is a consistent pattern in the manner in which these
images vary over time. Hays and Efros [10] used millions
of GPS-tagged images from the web for georeferencing a
new image. In order to match the query image with a large
collection of images (6 million images), several features
based on color histograms, texton histograms, line features,
gist descriptor, geometric context (labeling of the image
pixels into sky, buildings and ground), etc. are used. The
use of time-stamped photographs has also proved beneficial
for geo-localization [14].

In contrast to most of these approaches that leverage on
the availability of these georeferenced images, the approach
presented uses coarse 3D models downloaded from the web.
A large repository of coarse 3D models already exists for
major cities. There exist a few more related approaches that
use 3D models and/or omni-directional cameras for geolocal-
ization [16], [28], [18], [31], [5]. Koch and Teller proposed
a localization method using a known 3D model and a wide
angle camera for indoor scenes by matching lines from the
3D model with the lines in images [16]. In contrast to their
technique, this work relies on the skylines for geolocalization
of outdoor scenes. Although, the idea of using the horizon
or the skyline has been explored earlier in [28], [18], [1],
our approach is different from them in several ways. In
[28] a human user input is required to extract the skyline,
whereas this work uses an automatic graph cuts algorithm.
In addition, we also propose a method which does not need
prior sky detection. In [28] a hash table is precomputed to
match the unwrapped horizon with the 3D model, whereas
the algorithm presented in this work synthesizes fisheye
images on the fly for matching. This relaxes the requirement
of pre-processing and storing millions of synthetic skylines.
Our work is closest to [18], [1], where an omni-directional
infrared camera is used instead of an omnidirectional visible
camera or a prior sky detection is necessary for the algorithm
to work. This paper is an extended version of our previous
workshop paper [21].

II. OVERVIEW OF OUR APPROACH

We briefly explain the various building blocks of our geo-
localization system.
Calibration and fisheye synthesis.In this work we used a
fisheye lens with a field of view of about 183◦. However,
we would like to propose a method that could work with
all kinds of omni-directional cameras. For that reason, we
chose to use a generic calibration approach which treats every
camera as a mapping between a pixel and its corresponding
projection rays. It was recently shown that the generic
calibration algorithm outperforms standard parametric ap-
proaches in the case of very high distortions [23], [7]. We

are not aware of any work in vision which synthesizes omni-
directional images from 3D models for pose estimation. The
synthesis is done using a pixel shader program implemented
on a Graphics processing unit (GPU) for generating a large
number of fisheye images in real time.
Skyline matching using graph cuts and robust chamfer
distance. We propose a graph cuts based algorithm em-
bedded with parameter learning for robustly detecting sky
in omni-directional images. The most closely related work,
which already gives excellent results, is the geometric label-
ing problem to classify a given image into sky, buildings and
ground [12]. After detecting the sky, the skyline matching is
done using the chamfer distance embedded in a RANSAC
framework.
Skyline matching using shortest path algorithm.Through
a rigorous study we found that the sky detection method
proposed will not be robust for all weather conditions. In
order to handle difficult conditions due to weather and
lighting changes we also propose amax-minoperator and
a shortest path algorithm to compute the location. Here we
relax the requirement of sky-detection for geo-localization.
On the other hand, we define a cost function that validates
the various skyline proposals from the 3D model.
Experiments. We show promising experimental results for
hundreds of images captured under various weather and
lighting conditions in different cities. We also show that our
method is capable of outperforming GPS measurements in
urban canyons.
Degeneracy analysis.Finally we show a minimal solution
for 3DOF pose estimation using the minimal number of
required features (points and lines) on the skylines. This
theory highlights the important connections of the 2D-3D
registration problem to our proposed skyline-matching and
clearly points out the possible degenerate cases and rarityof
such cases in practice.

A. Calibration and Fisheye Synthesis

Fig. 2. (a) A fisheye image with two pixels marked. (b) and (c) show the
projection rays corresponding to the two pixels from the hemispherical set
of rays computed using generic calibration.

We use a generic imaging model to calibrate our fisheye
lens [23]. According to this model, every pixel in the omni-
image is mapped to a 3D half-ray in space. This mapping
can be computed using images of calibration grids. It has
been shown recently that the use of generic imaging models
allows very precise distortion correction [23].



In Figure 3 we show the various stages in synthesizing
a fisheye image. In order to synthesize a fisheye image we
first generate five binary perspective images, corresponding
to the views in the hemicube shown in Figure 3(c). As our
algorithm uses coarse 3D models without any texture, we
generate a cubemap simply by rendering a 3D model colored
entirely in white; the resulting binary image is black in sky
regions. We then use our calibrated ray-table to map the
cubemap to a fisheye image, as shown in Figure 3(c). The
black region is the predicted shape of the sky. Some of the
fisheye images synthesized at different places in a 3D model
of Boston’s financial center are shown in Figure 3(d).

As the previous section indicated, our ray-calibrated view
synthesis has the advantage that it does not “bake in” errors
that would arise from using a parametric lens model. In
addition, a pixel shader program is implemented in GPU to
generate these fisheye images at a very fast rate. This allows
us to generate accurate fisheye images on the fly; there is no
need to store images in a large database.

(a) (b) (c)

(d)

Fig. 3. Our algorithm to construct a fisheye image. (a) shows the 3D model
of an urban scene where we synthesize a fisheye image. (b) The cubemap
generated from a given point in the 3D model. (c) Fisheye image created
from the cubemap. (d) Examples of skylines extracted from fisheye images.

B. Sky Detection

Given an omni-directional image, which is circular in the
case of a fisheye model, we want to classify the pixels into
sky and rest. This can be seen as a segmentation problem
with two labels. The features that can be used for this
segmentation can vary from simple RGB colorspace com-
ponents to a wide variety of features like gradients, straight
lines, vanishing points, etc. Our approach has two modules:
a parameter learning method and a discrete optimization
algorithm. In our problem we use graph cuts, which is both
fast and highly successful in various vision problems like
stereo, segmentation, and image restoration [29]. An energy
function, involving binary variables in unary and pairwise
terms, is represented using a weighted graph whose minimum
cut (computed using the max-flow algorithm) yields an
energy-minimizing partition of the variables.

We briefly introduce the energy function, whose param-
eters we are interested in learning. Letxi ∈ B = {0, 1}
where i = 1, 2, .., n, represent boolean random variables.

(a) (b) (c)

Fig. 4. (a) Original image. (b) Likelihood for the sky. (c) Likelihood for the
rest of the image. Red and Blue correspond to higher and lowerlikelihoods
respectively.[Best Viewed in Color]

In our problem, each of these variables could represent
the boolean labels (sky and rest) of the pixels in the
omnidirectional images. We use quadratic pseudo-boolean
functions for representing our energy function. These are
nothing but energy functions of boolean variables that map
a boolean vector to a real value and thus the name pseudo-
boolean. Letθ denote the parameters in our energy function.
The parameter vectorθ consists of the unary termsθi;a
and the pairwise termsθij;ab, where i, j = 1, 2, .., n and
a, b ∈ B. These parameters are also referred to as unary and
pairwise potentials. In contrast to many vision algorithms
where these parameters are manually fixed, we compute them
automatically. The unary parameterθi;a can be seen as a
pseudo-boolean functionf : B → R that gives the cost when
xi = a. Similarly, a pairwise parameterθij;ab is a quadratic
pseudo-boolean functionf : B

2 → R that gives the cost
whenxi = a andxj = b. The function mapping partitions
to energies is then

E(x|Θ) =
∑

i∈V

{θi;0(1− xi) + θi;1(xi)}+

∑

(i,j)∈E

{θij;00(1− xi)(1− xj)

+θij;01(1− xi)xj + θij;10xi(1− xj)

+θij;11xixj} (1)

where V is the set of vertices andE is the set of edges
in the weighted graphG = {V,E}. Our goal is to learn
the parameters (θ′s) automatically for our problem. We
optimize the discriminating power of the model by estimating
parameters that maximize the difference between ground
truth labellings and all other labellings of a small number
of manually labeled examples. Our method is similar to
the maximum-margin network learning method using graph
cuts [30]; we generate “near-miss” labelings, then estimate a
parameter vector that maximizes the margin separating true
labellings from the near misses in a convex optimization.
Note that this parameter learning algorithm could also be
extended to multi-label variables by encoding them using
several Boolean ones [22].

In our current implementation we obtain the unary like-
lihood for sky and rest using their color values. We first
estimate a Gaussian model for the classes sky and rest and
compute the mean and covariance using manually segmented
ground truth images. For a new test image we obtain the



unary likelihood by computing the Mahalanobis distance to
the sky and non-sky classes as shown in Figures 4(b) and (c).
In our experiments we used about 20 manually segmented
images for training. We will reformulate our energy function
by decomposing the unary parametersθi;a as follows:

θi;a = θpa + liθ
l
a (2)

Once we have the likelihood costli for every node the unary
parametersθpa and θla are dependent only on the labela.
Similarly we assume that the pairwise parametersθij;ab are
also independent of the associated nodesi andj and replace
them byθab. Due to the problem nature, we assume that the
pairwise matrix is symmetric. i.e.θ01 = θ10. We denote the
new parameter vector which we want to learn asΘ.

Θ =
[

θ
p
0 θl0 θ

p
1 θl1 θ00 θ01 θ11

]

(3)

The parameter vectorΘ is then estimated via the standard
convex program for linear SVMs, using vectors of unary
and pairwise statistics from true labellings and near miss
labellings as positive and negative examples. In order to
guarantee that the estimated model supports optimal infer-
ence, we augment the convex program with a constraint on
the pairwise terms in the parameter vector that guarantees
submodularity. In the binary case the constraint is simply

θ00 + θ11 ≤ 2θ01 (4)

The submodularity condition is the discrete analogues of
convex functions in continuous domains.

C. Skyline Matching

First we segment the sky in fisheye images and obtain
the skyline as shown in Figure 7. The predicted skylines
corresponding to different locations in the 3D model are
obtained using the method described in section II-A. Since
the real-image segmentation and the predicted images are
both high quality, a simple chamfer distance suffices to
score the skyline match. During the chamfer matching, we
vary the pose parameters of our virtual fisheye camera and
obtain new skylines at various locations in the 3D model.
The first skyline is manually matched for initialization. The
subsequent ones are matched by searching for various pose
parameters near the first skyline. By embedding the chamfer
matching in a RANSAC framework we can handle small
occlusions, e.g. due to trees as shown in Figure 5.

Fig. 5. Left: The skyline detected in a fisheye image with incorrect
chamfer matching. Right: Robust chamfer matching using RANSAC for
correct skyline matching.

D. Skyline matching using shortest path algorithm

In contrast to the earlier approach of sky detection using
graph cuts and skyline matching using chamfer distance, we
employ a joint strategy which proposes skylines from the
3D model and scores the matching with the omni-images.
The main idea is very simple. Generate a lot of proposal
skylines for various poses using the 3D model as described
in section II-A. For each proposal we define a cost function
which measures the similarity with the skyline in the omni-
image. It is important to note that this method does not need
a prior sky detection and is hence relatively more robust than
the previous algorithm using graph cuts. The main steps are
shown in Figure 6 and explained below:

Fig. 6. (a) The max-min operator idea. (b) Example of a fisheye image.
(c) Edge map on the fisheye image. (d) max-min operation on thefisheye
image. (e) Shortest path result. (f) The synthetic skyline that best matches
the real one.

• We detect Canny edges on the original omni-image.
• We compute the max-min operator for every pixel in

the image. For every pixelp in the image, the max-
min operator computes the ratio of the distance to the
farthest edge pixelr w.r.t the nearest edge pixelq as
shown below:

M(p) =
dmax

dmin

(5)

Note that this operator highlights the edge pixels on the
skylines and suppresses other unimportant edge pixels.
In other words, this emphasizes the boundaries close to
a large free space, i.e. sky in this case. Such free space
cues have been used for alignment of 3D point clouds
to overhead images by analyzing the possible camera
rays from a given point [15].

• A proposal skyline is generated from the 3D model and
superimposed on the omni-image.

• We dilate the proposed skyline into an area of interest
with an inner boundary and an outer boundary, as shown
in Figure 6.

• Next we use theintelligent scissorsmethod to compute
the matching cost [19]. The basic idea is to construct a
graph using nodes that correspond to only the pixels



inside the two boundaries. The edges between the
nodes have weights which are inversely proportional
to M(p). Strong max-min values induce smaller edge
weights. We compute a circular shortest path inside
these boundaries. The cost of the shortest path increases
with the number of discontinuities. In other words, a
correct proposal enables us to find a shortest path with
no discontinuities. In practice, occlusions, inaccurate 3D
models, discrete sampling issues in the search space,
produce discontinuities even in the correct path. How-
ever, the lowest cost shortest path is always very close
to the actual skyline.

The method described for skyline matching has connec-
tions to a wide variety of segmentation techniques using
shortest path and graph cuts [32], [11], [27], [9]. Efficient
algorithms are possible using dynamic versions of graph cuts,
shortest paths or even planar graph cuts.

III. E XPERIMENTS

Our real experiments were all carried out in New York,
Boston and Tokyo as shown in Figure 10 (a,b,c). In all our
real experiments we used a Nikon Coolpix E8 Fisheye lens
with a field of view of 183◦ to capture about 300 images each
in New York, Boston and Tokyo. We tested our algorithm on
more than 6 kms. All the 3D models were purchased from
a commercial website∗. We show one of the models used in
our experiments in Figure 9. These are plane approximated
coarse models of cities.

The day-time images taken in Boston were evaluated with
the sky detection (See Figure 7) and chamfer matching
algorithm. The sky detection algorithm failed for Tokyo
data (due to the presence of trees) and night time images
taken in New York. We used the more robust algorithm
(shortest path) for the New York and Tokyo images. The
geo-trajectories for the images captured in Boston, New York
and Tokyo are shown in Figure 10. The images were captured
approximately at an interval of 5 meters. We search for all 6
DOF for fine pose estimation using graph cuts/shortest path.

The accuracy of the algorithm is evaluated by comparing it
with a commercial GPS unit ”Garmin N̈uvi 255W”. Upward
facing fisheye images and GPS measurements were collected
for 30 locations in a street in the financial district in Boston.
The average height of the buildings in this street is around
50 meters and the average width is 15 meters. The images
were collected at the boundary between the sidewalk and
the road. We register the real trajectory (boundary between
road and sidewalk), GPS measurements and our localization
results on an aerial image obtained from Google Earth.
In order to compare the result of our algorithm the aerial
map of the 3D model is registered over Google Earth by
manually clicking corresponding points and by computing
the transformation matrix with a least square solution. The
mean error for the GPS is 29 meters and the mean error
for our algorithm is 2.8 meters (cf. Figure 10). One of the
reasons for the degraded performance of GPS is due to poor

∗www.3dcadbrowser.com sells five 3D models for a price of80$ for
several major cities of the world

satellite reception (because of tall buildings). By comparing
the heights of 20 buildings in our 3D model with the ones
in Google Earch a discrepancy up to 12 meters is measured.
Our algorithms were able to achieve good results even with
such imprecise 3D models. In the supplementary material we
show our geo-localization results for various images takenin
New York, Boston and Tokyo.

Fig. 8. On the left we show examples of fisheye images captured during
night time. In the middle, we show the max-min features highlighting the
boundary near an open region. On the right, we show the matched skyline
with minimum cost in the shortest path algorithm.

Fig. 9. 3D model of Boston’s financial district: One of the coarse 3D
models used in this paper.

IV. D EGENERACYANALYSIS USING 2D-3D
REGISTRATION

The skyline-based geo-localization is nothing but a 2D-
3D registration using points and lines that are disguised in



Fig. 7. Sky detection results: Original and segmented fisheye images are shown.

Fig. 10. On the top (a,b and c) we show the geo-trajectories obtained for
100’s of images using our algorithm. In (d) we show a comparison with the
GPS.

a piecewise non-linear curve in omni-images. If one realizes
this connection, it becomes obvious that the theory for
minimal pose estimation governs the limitations/degeneracies
of the proposed algorithm. We briefly show the minimal
solution for pose estimation using 2D-3D point/line corre-
spondences. We make few reasonable assumptions in order

to find the minimal solution. First, we assume that the omni-
camera is always facing upward along theZ axis. Small
misalignments could be easily corrected using vanishing
points [17]. Second, we assume that the images are all
taken at the same height (small variations are negligible
compared to the skylines). As a result there are only 3
degrees of freedom (DOF) between two consecutive images.
We show a simple pose estimation algorithm that could
be used to compute these 3DOF between two consecutive
images. Accordingly the rotation and translation matricesare
shown below:

R =





R11 R12 0
−R12 R11 0
0 0 1



T =





Tx

Ty

0



 (6)

As shown in Figure 11(a), the skyline is computed for the
left image using either the graph cuts or the shortest path
algorithm. Our goal is to obtain a location for the skyline in
the right image. Letp1 andq1 be two image pixels on the left
image and their matching pixels in the right image are given
by p2 andq2. The 3D points corresponding topi andqi are
given byP andQ respectively. These 3D points are already
known from the skyline matching in the left image. Now
we have 3D-2D correspondences between the 3D model and
pixels on the right image - this can be used to get the pose
for the right image. Each point correspondence will give a
collinearity constraint, which in turn provides two equations.
We briefly explain the formulation of this constraint. As
shown in Figure 11(b), the camera center for the right image
C2, a point on the projection ray ofp2 given by C2 + ~d1
and the 3D pointP are all collinear. Accordingly any3× 3
subdeterminant of the following matrix vanishes.











C2,x C2,x + ~d1,x R11Px + R12Py + Tx

C2,y C2,y + ~d1,y −R12Px + R11Py + Ty

C2,z C2,z + ~d1,z Pz

1 1 1









(7)

Although we obtain four equations by removing one row
at a time, the total number of independent equations is only
two. By using the collinearity constraint for the second point
Q, we can obtain two other equations. Using these equations
it is straight forward to compute the 3DOF.

Similarly it is possible to identify two coplanarity con-
straints from a single line correspondence. LetL1 andL2 be
two projected image lines on the left and the right images
respectively. Let the corresponding 3D line be given by
L1L2, the 3D location of it is already known using the
skyline matching in the left image. As a result, the second
camera centerC2, two points on the projection rays forL1

and L2 given by C2 + ~d1 and C2 + ~d2 respectively, and
two arbitrary 3D pointsL1 and L2 are all coplanar. This
results in two coplanarity constraints using the quadruplets
[C2, C2 + ~d1, C2 + ~d2, L1] and [C2, C2 + ~d1, C2 + ~d2, L2]
respectively. We show the coplanarity constraint for the first
quadruplet:









C2 C2 + ~d1x C2 + ~d2x R11L1x + R12L1y + Tx

C2 C2 + ~d1y C2 + ~d2y −R12L1x + R11L1y + Ty

C2 C2 + ~d1z C2 + ~d2z L1z

1 1 1 1









(8)

The coplanarity constraint makes the determinant of the
above matrix to vanish. In the same way, we can obtain
two equations from the second 3D lineM1M2. Overall, it
is possible to get the pose from two feature correspondences
(2 points, 2 lines, 1 point and 1 line).

The degenerate cases are listed below:

• Less than two distinct points on the whole skyline.
• Only one line with no distinct point on it.
• Only two parallel lines with no distinct points on them.

It is easy to observe that such cases are extremely rare to
happen even in perspective images. The use of omni-images
makes it almost impossible. However, the real problem is
to obtain the 2D-3D correspondence, which can always
be improved further as it belongs to the class of NP-hard
problems. Since the degenerate cases are very rare to occur,
the use of better shape matching algorithms may robustify
the proposed algorithms in the following difficult conditions:

• Missing buildings - The algorithm can still work as
shown in Figure 12(c).

• Inaccurate 3D models - Our experiments were all tested
using coarse 3D models which were plane-based and
having a height discrepancy of up to 12 meters.

• Occlusion from trees - A small amount of occlusion
can be easily handled with a RANSAC based chamfer
matching (See Figure 5) although the sky detection itself
fails as shown in Figure 12. The shortest path algorithm
can handle larger occlusions from trees.

• Repeated patterns in the skylines - The approach will
fail only if the patterns repeat between two consecutive
images. Note that while estimating the geo-trajectory

(a)

(b) (c)

Fig. 11. In (a) we show the point and line matches between two images
where the skyline is matched for the left one. In (b) we show the two camera
positions for the two images shown above along with the projection rays
corresponding to the two point matches. In (c) we show the projection rays
corresponding to the line matches that lead to coplanarity constraints (See
text).

with a good initialization, the skyline only needs to be
unique locally.

• Sharp turns in the skylines - This sometimes degrades
the performance a little as shown in Figure 12.

• Short buildings - Our preliminary experiments suggest
that the method seems to work better for short buildings
than tall ones because the skyline captures more lines
and points.

V. D ISCUSSION

Existing approaches for geo-localization use either a
SLAM or recognition based techniques. This work could be
seen as a method that overlaps with both these paradigms
and extends to formulate the geo-localization problem as a
shape matching one. This enables us to apply the existing
wide variety of discrete optimization/shape matching results
to this problem. Our experiments clearly demonstrate that
it is possible to outperform GPS measurements in urban
canyons, which are known to be extremely problematic for
commercial GPS units.

The main limitation of the proposed method is that the
skylines are sometimes very far away from the camera.
This affects the overall accuracy of the geo-localization.
However, the other advantages from skylines are numerous:
easy recognition due the presence of open space or blue
sky, fewer occlusions from street signs, pedestrians, cars,
etc. are so overwhelming that such an approach is still very



(a) (b) (c) (d)

Fig. 12. A few failure cases for sky detection and shortest path algorithms. (a) and (b) show the errors in sky detection due to the occlusion from sun and
trees. (c) The shortest path algorithm can handle and predict the missing buildings as shown. Mismatches in some part of the skyline while the rest matches
very precisely, indicate changes in the scene. In (d) we showthe short circuit problem when the boundaries for the shortest path algorithm overlap. This
can result in degradation in the performance of the algorithm when the skyline takes sharp turns.

beneficial. In this work, our goal was to investigate the use
of only skylines for geo-localization and we believe that it
is already very good for a localization of about 2 meters.
To improve the localization to a few centimeters we can use
other vision features: vanishing points [17], interest point
matching/tracking between consecutive frames [33], [25],
3D points reconstructed using SfM can be registered with
the building walls [24], SLAM algorithms [16], [31] and
maybe even priors learned from image databases [10]. It is
important to note that the current GPS systems have been
improved and robustified for several years by addressing
various complicated issues that even include the theory of
relativity.

In a few years, we believe that it will be possible to build
an inexpensive, robust and accurate vision based GPS.

Acknowledgments: Srikumar Ramalingam would like to
specially thank Jay Thornton for all the motivating dis-
cussions and valuable feedback throughout the project. We
would also like to thank Keisuke Kojima, John Barnwell,
Joseph Katz, Haruhisa Okuda, Hiroshi Kage, Kazuhiko
Sumi, Ryo Kodama, and Daniel Thalmann for their valuable
feedback, help and support.

REFERENCES

[1] J.-C. Bazin, I. Kweon, C. Demonceaux, and P. Vasseur. Dynamic
programming and skyline extraction in catadioptric infraredimages.
In ICRA, 2009.

[2] T. Bonde and H. Nagel. Deriving a 3-d description of a moving rigid
object from monocular tv-frame sequence. InJ.K Aggarwal and N.I.
Badler, editor, Proc. Workshop on Computer Analysis of TimeVarying
Imagery, 1979.

[3] T. Brodsky, C. Ferm̈uller, and Y. Aloimonos. Directions of motion
fields are hardly ever ambiquous. InECCV, 1996.

[4] T. Broida and R. Chellappa. Estimation of object motion parameters
from noisy image sequences.PAMI, 1986.

[5] F. Cozman, E. Krotkov, and C. Guestrin. Outdoor visual position
estimation for planetary rovers.Autonomous Robots, 2000.

[6] K. Daniilidis and H. Nagel. The coupling of rotation and translation
in motion estimation of planar surfaces. InCVPR, 1993.

[7] A. Dunne, J. Mallon, and P. Whelan. A comparison of new generic
camera calibration with the standard parametric approach.MVA, 2007.

[8] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and map-
ping (slam): Part i the essential algorithms.Robotics and Automation
Magazine, 2006.

[9] D. Farin and P. de With. Shortest circular paths on planargraphs. In
Information Theory in the Benelux, 2006.

[10] J. Hays and A. Efros. Im2gps: estimating geographic imagesfrom
single images. InCVPR, 2008.

[11] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shorterst-
path algorithms for planar graphs. InJournal of Computer and System
Sciences (Selected Papers of STOC 1994), 1997.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout
from an image.IJCV, 75(1):151–172, 2007.

[13] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless. Geolocating
static cameras. InICCV, 2007.

[14] E. Kalogerakis, O. Vesselova, J. Hays, A. Efros, and A. Hertzmann.
Image sequence geolocation with human travel priors. InICCV, 2009.

[15] R. Kaminsky, N. Snavely, S. Seitz, and R. Szeliski. Alignment of 3d
point clouds to overhead images. InIEEE Workshop on Internet Vision
- CVPR, 2009.

[16] O. Koch and S. Teller. Wide-area egomotion estimation from known
3d structure. InCVPR, 2007.

[17] J. Kosecka and W. Zhang. Video compass. InECCV, 2002.
[18] J. Meguro, T. Murata, H. Nishimura, Y. Amano, T. Hasizume, and

J. Takiguchi. Development of positioning technique using omni-
directional ir camera and aerial survey data. InAdvanced Intelligent
Mechatronics, 2007.

[19] E. Mortensen and W. Barrett. Interactive segmentation with intelligent
scissors. InGraphical Models and Image Processing, 1998.

[20] D. Nister, O. Naroditsky, and J. Bergen. Visual odometryfor ground
vehicle applications.Journal of Field Robotics, 2006.

[21] S. Ramalingam, S. Bouaziz, P. Sturm, and M. Brand. Geo-localization
using skylines from omni-images. InS3DV, 2009.

[22] S. Ramalingam, P. Kohli, K. Alahari, and P. Torr. Exact inference in
multi-label crfs with higher order cliques. InCVPR, 2008.

[23] S. Ramalingam, P. Sturm, and S. Lodha. Towards complete generic
camera calibration. InCVPR, 2005.

[24] S. Ramalingam, Y. Taguchi, T. Marks, and O. Tuzel. P2π: A minimal
solution for registration of 3d points to 3d planes. InECCV, 2010.

[25] D. Robertson and R. Cipolla. An image-based system for urban
navigation. InBMVC, 2004.

[26] E. Royer, M. Lhuillier, and M. Dhome. Monocular vision for mobile
robot localization.IJCV, 2007.

[27] F. Schmidt, E. Toppe, D. Cremers, and Y. Boykov. Efficient shape
matching via graph cuts. InEMMCVPR, 2007.

[28] F. Stein and G. Medioni. Map-based localization using the panoramic
horizon. In IEEE Transactions on Robotics and Automation, 1995.

[29] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. F. Tappen, and C. Rother. A comparative study
of energy minimization methods for Markov random fields. InECCV,
volume 2, pages 16–29, 2006.

[30] M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using graph cuts.
In ECCV, 2008.

[31] J. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual odometry in
urban environments using an omnidirectional camera. InIROS, 2008.

[32] N. Xu, R. Bansal, and N. Ahuja. Object boundary segmentation using
graph cuts based active contours. InCVPR, 2001.

[33] W. Zhang and J. Kosecka. Image based localization in urban environ-
ments. In3DPVT, 2006.


