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Abstract

In this thesis a novel technique to accurately estimate the global position of a moving car

using an omnidirectional camera and untextured 3D city model is proposed. The key feature in

our geolocalization is the skyline, which is essentially the boundary between sky and buildings.

The centerpiece of this algorithm is the extraction and matching of these skylines from real

images of the city with synthetic ones generated from coarse 3D models. The localization is

expected to be very precise if the largest possible skyline is captured and matched. For this

reason, an omni-directional camera is employed and oriented towards the sky. The real skyline

is extracted from the omni-directional images by first segmenting the sky from the rest. In order

to do this a novel graph cuts based segmentation algorithm is proposed where the parameters

of the cost function are learned efficiently using a cutting plane algorithm. On the other hand,

the synthetic skyline is generated from the 3D model using the calibration parameters from the

real omni-directional camera obtained using a generic calibration algorithm. The experimental

results are very promising and we believe that our algorithm can be used to develop a vision-

based global positioning system (GPS) that can outperform commercially available GPS units

in dense urban areas.
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Chapter 1

Introduction

The skyline has long been a source of fascination for photographers, thought to identify

the city as uniquely as a fingerprint. In this work, a step further have been taken to investigate

its uniqueness for any given geospatial location. A simple, robust and fast method to compute

the geolocation by matching skylines from real fisheye images and synthetic ones from a coarse

3D model of a city is proposed. In other words, the pose estimation problem is solved for an

omnidirectional camera in the actual world coordinate system of the 3D model. Pose estima-

tion, although extremely challenging due to several degeneracy problems and inaccurate feature

matching, is a well researched topic in computer vision. However most existing solutions are

only proven on the smaller scale of the laboratory setup. In this work, the possibility of us-

ing the skylines for solving the pose estimation problem is investigated. Such an approach has

several interesting properties compared to existing techniques. First, the skyline is compact,

unique and extremely informative about a location. Second, it is less prone to occlusions (trees,

lampposts, cars and pedestrians) and lighting variations than other features.

The basic idea of matching skylines from 3D models and omni-directional images is

shown in Figure 1.1. The main reason to use omni-directional cameras instead of perspective

ones come from the fact that the stability of the underlying pose estimation problem increases

with the field of view of the camera. It has also been proven formally that omni-directional
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(a) (b)

Figure 1.1: An illustration of the motivating idea. (a) A car auto-mounted with an omni-

directional camera facing towards the sky. (b) The image captured by the camera with skylines

marked. This image is matched to the synthesized one from the 3D city model to compute the

geospatial location of the car.

cameras can give much better accuracy in motion estimation than perspective ones [19, 5]. In

the case of small rigid motions, two different motions can yield nearly identical motion fields

for classical perspective cameras, which is not the case for omnidirectional images. This is also

obvious in practice as the omni-directional camera allows to acquire the skyline of a complete

street in contrast to a perspective camera that can only acquire a small part of it as shown in

Figure 1.2.

1.1 Related Work

In the last few years, there has been an increasing interest in inferring geolocation from

images [29, 40, 18, 15]. Several recent image based localization approaches have been proposed

using feature matching algorithms. The general idea behind most of these approaches is to find

the closest images to a given query picture in a database of GPS-tagged images.

In 2004, Robertson and Cipolla [29] showed that it is possible to obtain geospatial local-

ization by wide-baseline matching between a new image from a mobile camera and a database

of rectified building facade images. As the feature matching is more efficient and accurate using

rectified images, they also rectify the new input image from the mobile camera by computing
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(a) (b)

Figure 1.2: Comparison of a perspective image (a) and an omni-directional image (b) taken

from the same location. The perspective image contains only a very small skyline compared to a

much larger one from the omni-directional image. As a result, the localization using perspective

images can be extremely ambiguous. The marked rectangle shows the overlap between the

perspective and the fisheye image.

the horizontal and vertical vanishing points. The best match is given by the facade image in the

database which has the maximum number of robust correspondences with the query image.

In 2006, Zhang and Kosecka [40] showed accurate results by using SIFT (scale invariant

feature transform) features to search the closest images in a database of GPS-tagged images.

The basic idea is to generate a large quantity of SIFT matches and robustly select the ones lying

on the dominant plane. The two nearest images (also individually close to each other) to the

query image are selected for motion estimation. In cases where only one reference view can be

reliably computed, the location of this image is given to the query image.

In 2007, Jacobs et al. [18] used an interesting approach to geolocate a static outdoor

webcam by correlating its images with satellite weather imagery taken at the same time of the

day or with images coming from webcams for which the locations are known. The underlying

idea is that there is a consistent pattern in the manner in which these images vary over time.

Using a simple algorithm that exploits the principal components of a matrix computed from a

large database of images, geolocalization has been shown with an ambiguity of 50 miles.

In 2008, Hays and Efros [15] used millions of GPS-tagged images from the web for

georeferencing a new image. In order to match the query image with a large collection of images
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(6 million images), several features based on color histograms, texton histograms, line features,

gist descriptor, geometric context (labeling of the image pixels into sky, vertical and ground),

etc. are used. Based on these features, the k-nearest neighbors are computed and a mean-shift

clustering is performed on these neighbors based on their GPS coordinates. This enables them

to remove spurious outliers and the quantitative evaluation demonstrate a performance up to 30

times better than the prediction by chance.

In contrast to most of these approaches that leverage on the availability of these georef-

erenced images, the approach presented uses coarse 3D models downloaded from the web. A

large repository of coarse 3D models already exists for major cities in the world, thanks to

several promising algorithms to reconstruct large urban scenes [37, 7, 12, 2, 1].

There exist few more related approaches that use omni-directional cameras and 3D mod-

els for geolocalization [20, 32, 23]. Koch and Teller proposed a localization method using a

known 3D model and a wide angle camera for indoor scenes by matching lines from the 3D

model with the lines in images [20]. In contrast to their technique, this work relies on the

skylines for geolocalization of outdoor scenes. Although, the idea of using the horizon or the

skyline has been explored earlier in [32, 23], our approach is different from them in several

ways. In [32] a human user input is required to extract the skyline, whereas this work uses an

automatic graph cuts algorithm. Moreover, a hash table is precomputed to match the unwrapped

horizon with the 3D model, whereas the algorithm presented in this work synthesizes fisheye

images on the fly for matching. This relaxes the requirement of pre-processing and storing mil-

lions of synthetic skylines and increases the accuracy. Our work is closest to [23], where an

omni-directional infrared camera is used instead of omnidirectional visible camera. The main

differences between our approach and their work are summarized bellow:

• Their system requires an expensive infrared camera, which makes it impractical for large-

scale deployment in consumer oriented applications, such as vehicle or hand-held devices.

In addition, they require accurate intra camera parameters and an accurate method of

projection. With the IR camera, it is necessary to have infrared rays emitted in certain
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patterns. That makes it a challenge to determine a technique for capturing images of

cyclical patterns used in camera calibration. Hence, a highly specialized calibration jig

with thermal point sources arranged inside is required, which further stands in the way of

mass deployment in a consumer market.

• The method requires a high-resolution 3D digital surface model (DSM).

• The method unwraps the infrared images into a rectangular panorama, from which edges

are extracted to generate a linear profile of the surrounding buildings. They use an az-

imuth projection specialized for their camera design. The profile is then correlated with

the profiles in the restoration images. Neither the unwrapped infrared profiles nor the

profiles in the restoration images directly reflect the actual skyline. As a result, their ap-

proach can lead to potential inaccuracies when the camera is not vertically aligned. Their

angle of view is restricted to 20-70 degrees, and is limited to only provide a 2D location

and 1 D orientation.

1.2 Overview of the algorithm

In Figure 1.3 the four main steps of our approach are shown: fisheye camera calibration,

fisheye synthesis, sky detection and skyline matching. The main idea of the algorithm is to

match skylines accurately generated from a coarse 3D model using the camera calibration in-

formation with real skylines from a video or a set of images. The skyline are extracted from

the real images thanks to a sky detection algorithm based on graph cuts where the parameters

of the energy function are learned from a training set. The synthetic and the real skylines are

matched using a RANSAC (random sample consensus) based approach robust to outliers as

deformations of the 3D model or occlusions in the real images. Many images are generated at

different positions and orientations in the 3D model and the position and orientation that give

the lower matching score is keep as the final location. The four main parts of the algorithm are
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summarized bellow.

1.2.1 Camera Calibration

In this thesis all the experimental results use a fisheye lens based omni-directional camera

with a field of view of 360◦×183◦. However, the calibration algorithm used in this work does not

make any assumption about the type of omni-directional lenses. In order to propose a method

that could work with all kinds of omni-directional cameras a generic calibration approach which

treats every camera as a mapping between a pixel and its corresponding projection rays has

been used. As a result of this generality, it is easier to change the camera configuration and

still obtain the geolocalization. This general model has been studied in various works [26, 14,

25, 27, 33, 28] and it was recently shown that the generic calibration algorithm outperforms

standard parametric approaches in the case of very high distortions [28, 8].

1.2.2 Fisheye Synthesis

Although synthesis of non-linear projection such as fisheye projection have been studied

in computer graphics since a long time and are used in different type of applications as immer-

sive display, computer games or scientific visualization, we are not aware of any work where

fisheye images are synthesized using the generic calibration information and where fisheye syn-

thesis has been used for geolocalization. Further, the fisheye synthesis is also difficult because

of the limitations in the OpenGL (and DirectX) pipelines: they do not support non-linear pro-

jections because the graphics card itself is made and optimized for linear operations on vertices

and pixels. Although a software rasterization is still an option, such approaches can never lead

to a realtime performances. Hence, most approaches use graphics card capabilities and tradeoff

accuracy and generality for speed. There exist few types of method for synthesizing non-linear

projections for single center of projection models. It can be done at the vertex level by com-

puting the correct projection of the mesh vertices in a vertex shader [31]. Another approach
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include rendering a perspective view of the scene in a texture and deforming a grid covering the

screen on which this texture is mapped [31, 39]. Purely vertex based approaches are generally

inaccurate in case of large distortions as it involves a linear interpolation between the vertices

during the rasterization process. Hence, in order to have a good visual result the mesh must be

tessellated into small triangles. Pixel based approaches are generally more accurate but slower.

One technique consists of rendering the scene in a texture and instead of computing the defor-

mation at the vertex level, post-process the texture in a pixel shader in order to deform it at the

pixel level. An other method consists of rendering a cube map and process it to render the non-

linear view [38]. The pixel based approaches are less inaccurate than the vertex base approach.

Nevertheless, the texture quantization can also introduce artifacts, and hence the accuracy is

determined by the texture size. There exist some hybrid approaches involving both vertex and

pixel processing [17, 13], where [17] also introduces a more efficient algorithm to compute a

projection for multi-center models. In addition of all these works [6] proposed a framework for

flexible viewing volume rendering which allows the user to deform the frustum of the camera

in more complex shapes and obtain a non-linear projection.

The main idea of the algorithm presented in this work is partly similar to [38], but instead

of an analytical model, a mapping table computed using the generic calibration is used. The

synthesis is done with the graphic processor unit (GPU) using a shader program implemented

in OpenGL shading language (GLSL) in order to generate a large number of fisheye images in

few seconds.

1.2.3 Sky Detection

In order to extract the skyline of the real image a sky detection algorithm based on graph

cuts has been developed. Classifying the pixels into sky and rest can be seen as a segmentation

problem with two labels. The features that can be used for this segmentation can vary from

simple RGB colorspace components to a wide variety of features like gradients, straight lines,

vanishing points, etc. The labeling can be formulated as an energy minimization problem and



10 Introduction

solved by a discrete optimization algorithm like graph cuts. Graph cuts is successfully used

in various vision problems like stereo, segmentation, and image restoration [34]. A parameter

learning algorithm has been implemented in order to find the best parameters of the energy

function to minimize and to avoid hand tuning. Our method is similar to the maximum-margin

network learning method using graph cuts [35].

Few related works exist, in [36] a novel method has been proposed to segment and replace

the sky in different images. The segmentation is achieved using graph cuts, where the features

are learned using a classifier based on randomized forest [24]. Another related work, which

already gives good results, is the geometric labeling problem to classify a given image into sky,

buildings and ground [16]. However, some of their prior assumptions do not hold true in our

model. First, the camera is not perspective. Second, the image is not taken by a person with

the optical axis approximately parallel to the ground but perpendicular to the ground. Third,

the algorithm expects the sky to be mostly on the top of the image. On the contrary, the images

used mainly have the sky at the center.

1.2.4 Skyline Matching

Matching two shapes or measuring the similarity between shapes is a well researched

topic in computer vision. Applications of shape matching include image retrieval, object recog-

nition, object detection, pose estimation and registration. Hence, a wide range of techniques

have been developed to solve these problems even in case of occlusion or noise as [22, 4, 3, 30].

In order to match the skyline robustly and efficiently a RANSAC based chamfer matching algo-

rithm has been designed. It can find the precise position and orientation in the 3D model in the

presence of outliers such as missing buildings or occlusions. The algorithm finds the location

with the minimum cost between the real and the synthetic skylines by generated fisheye images

for different orientations and locations in the 3D model. For each new generated image the

algorithm computes the cost in O(N), where N is the number of pixels of the image.
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Overview of this thesis: In Chapter 2 the generic calibration and fisheye synthesis algorithm

are presented. Next, the sky detection and matching algorithms are explained in Chapter 3.

As this work involved a lot of software engineering and optimization, some details about the

implementation are given in Chapter 4. Finally, promising experimental results are shown in

Chapter 5.
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Figure 1.3: The various stages of the algorithm.



Chapter 2

Fisheye Lens Geometry and Synthesis

The fisheye camera is an important part of our setup as it allows to acquire images con-

taining a wide skyline for the geolocalization. Nevertheless, the fisheye camera does not belong

to the class of linear projection and hence need a different calibration method. In this chapter,

firstly a quick overview of the geometry of a fisheye lens is given, secondly the method used

to calibrate the camera is explained and finally the algorithm developed to synthesized fisheye

images from a 3D model is presented.

2.1 Linear and Non-Linear Projection

A camera projection can be defined as a mapping from a 3D scene point to a 2D pixel

f : R
3 → R

2. In computer graphics and vision, linear projections such as perspective and

orthographic are the most popular ones. For a 3D point P (X, Y, Z) and the image plane at a

distance f from the camera center C, the projection p(x, y) is defined in the perspective case

by x = fX

Z
y = fY

Z
(cf. Figure 2.1) and in the orthographic case by x = X and y = Y (cf.

Figure 2.2). They can be formulated in a matrix form using homogeneous coordinates.
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center C, the projection p(x, y) is defined in the perspective case by x = fX
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Numerous camera models are non-linear as fisheye or catadioptric and hence cannot be

characterized by a linear system. Many mathematical functions have been derived to model

different types of non-linear lenses. In the case of the fisheye lenses, several models exist

assuming that the fisheye cameras have a single center of projection (in reality the rays pass

through a small disk in space and not a single point). One class of model used for fisheye is

called radially symmetric [10]. The radially symmetric models with a single center of projection
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are defined by an equation of the form r = k · f(θ) where k is the lens parameter, θ is the angle

made by the projection ray and the optical axis and r is the distance between the 2D image point

and the image center (cf. Figure 2.3). These models can be visualized by a surface of revolution

as shown in the Figure 2.4 and defined by the equation:

z =
r

tan θ
=

f(θ)

tan θ
(2.3)

z

r

θ

θ

tan θ = r
z

Figure 2.3: The radially symmetric models with a single center of projection is defined by an

equation of the form r = k · f(θ) where k is the lens parameter, θ is the angle made by the

projection ray and the optical axis and r is the distance between the 2D image point and the

image center.

(a) (b) (c) (d)

Figure 2.4: (a) Equidistant projection: r = kθ (b) Stereographic projection: r = k tan θ
2

(c)

Equisolid angle projection: r = k sin θ (d) Sine law projection: r = k sin θ
2

Projecting a 3D point in the case of radially symmetric models is equivalent to find the

intersection of the projection ray with the surface of revolution and taking the orthographic

projection of this point on the image plane as shown in the Figure 2.5.
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Figure 2.5: Fisheye Projection of the red line. Firstly the line is projected over the surface of

revolution (blue line), and then projected onto the image plane (green line).

2.2 Calibration

(a) (b) (c)

Figure 2.6: (a) Generic calibration using three calibration grids. (b) and (c) show an original

fisheye image and samples of distortion corrected regions, obtained using the calibration result.

The yellow line in (c) shows that the algorithm can correct even heavily distorted lines.

The main idea behind the generic calibration approach [28] is explained in this section.

Three images of a calibration grid are captured by the camera that needs to be calibrated. The

images are taken from unknown viewpoints. Every image pixel observes three 3D points in

different calibration grids as shown in Figure 2.6(a). These 3D points are obtained in three

different coordinate systems. However, these points are collinear if they are expressed in the

same coordinate system. That constraint enables us to compute the motion between the views

and eventually the projection rays for the image pixels.

Let Q, Q′ and Q′′ refer to a known point on the first, second and the third calibration grids
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respectively. Let the coordinate system of the first calibration grid be the reference frame and

O represent the unknown optical center. The pose of the second and the third calibration grids

with respect to the first one are given by (R′, t′) and (R′′, t′′) respectively. In order to estimate

the pose of the grids, the three points O, Q and Q′ are stacked in a matrix after transformation to

the reference frame and the collinearity constraint is used to extract the poses: if the estimation

of the grid poses and the optical center is correct O, Q and Q′ are collinear. The collinearity

constraint will force the determinant of any submatrix, whose size is size 3×3, of the following

matrix to vanish:


















O1 Q1 R′

11Q
′

1 + R′

12Q
′

2 + R′

13Q
′

3 + t′1Q
′

4

O2 Q2 R′

21Q
′

1 + R′

22Q
′

2 + R′

23Q
′

3 + t′2Q
′

4

O3 Q3 R′

31Q
′

1 + R′

32Q
′

2 + R′

33Q
′

3 + t′3Q
′

4

O4 Q4 t′4Q
′

4



















(2.4)

In other words, we obtain four constraints by removing one row at a time. A similar matrix can

be obtained from the 3D points on first and third calibration grids. Using all these constraints

the motion variables (R′, t′) and (R′′, t′′) are extracted. After extracting the motion variables

we can reconstruct these projections and thus obtain the necessary calibration information. The

details of this extraction is shown in [28].

In practical calibration approaches, it is not possible to extract the projection rays for

every pixel. The authors of [28] suggested the use of homography or bilinear interpolation for

computing the projection ray for other pixels.

2.3 Fisheye Synthesis

As mentioned in the introduction, the methods to generate a non-linear projection can be

classified in three different classes: vertex based, pixel based and mixed (processing on vertices

and pixels). In order to synthesize an accurate non-linear projection of the 3D model in real

time, an image based approach has been chosen. Many reasons have motivated this choice.
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Firstly in a pixel based approach the accuracy of the result does not depend on the geometry

of the model. Secondly, this technique is very suitable for the incorporation of the generic

calibration. Finally it can be efficiently optimized with the new shader model and the parallel

architecture of the GPU.

The main idea of pixel based algorithms is to render a raster representation of the scene

using multiple perspective views (as a cube map) and to convert them to a non-linear projection.

In order to generate this representation the camera is rotated in its local coordinate system and

the views are rendered in a texture array

In Figure 2.7 the various stages in synthesizing a fisheye image from a hemicube are

shown. The first step of the algorithm consists to calibrate the camera (as explained in the

previous section) and to generate the table which maps the pixels in the fisheye image to the

corresponding projection rays in space. Then, the mapping between the fisheye image pixels and

the hemicube pixels is computed by using the calibration information. To do that the projection

rays stored in the generic calibration table are intersected with the faces of the hemicube in

order to associate every pixel in the fisheye image to a specific face and sub-pixel location in

the hemicube. These associations between pixels from the fisheye image and pixels from the

hemicube faces are stored in a floating point texture in order to be compatible with the pixel

shader in charge of post-processing the perspective views.

To synthesize a fisheye image five binary perspective images of the 3D model corre-

sponding to the views in the hemicube are generated. These views are synthesized in a single

pass thanks to a layered rendering approach using a geometry shader. The binary views of the

hemicube are generated simply by rendering a 3D model colored entirely in white, hence the

resulting binary images are black for the sky regions and white for the buildings. The hemicube

is then transformed to a fisheye image thanks to a pixel shader by a simple look-up in the

pre-computed mapping table (floating point texture).

Our ray-calibrated view synthesis has the advantage that it does not “bake in” error that

would arise from using a parametric lens model. Moreover, as a result of our optimization
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techniques, accurate fisheye images are generated on the fly at a high frame rate removing the

need to store images in a large database.

Calibration Hemicube Intersection

Fisheye (Pixel Shader)Hemicube (Geometry Shader)

Real Time

O�ine

Mapping 

between

 pixels and rays
!oating point 

texture

Figure 2.7: The various stages of the fisheye synthesis algorithm by transformation of a

hemicube.



Chapter 3

Geolocalization by Matching Skyline

This chapter explains how the skyline is extracted from the fisheye images and how the

matching between synthetic and real skylines is done. This chapter introduces the parameter

learning method used for the sky detection and the RANSAC based matching algorithm.

3.1 Segmentation

The labeling of the fisheye images in sky and rest is a segmentation problem with two

labels which can be formulated as an energy minimization problem and solved by a graph

cuts algorithm. An energy function, involving binary variables in unary and pairwise terms, is

represented using a weighted graph whose minimum cut yields an energy-minimizing partition

of the variables. The minimum cut (st-mincut) separates the set of nodes (a node symbolizes

a pixels) in the graph into two sets, one belonging to a source node (sky) and one belonging

to a sink node (rest). Formally, let G = (V, E) be a directed graph which consists of a set of

non-negative directed edges E and of a set of nodes V containing two special nodes, namely,

the source S and the sink T . The st-mincut algorithm partitions the set of vertices in V into two

disjoint sets VS and VT , such that S ∈ VS and T ∈ VT . The special nodes S and T correspond

to sky and rest respectively as shown on Figure 3.1. The cost of the cut is computed by the sum
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of the weights corresponding to directed edges linking a node p ∈ VS to a node q ∈ VT . It has

been proved by Ford and Fulkerson [11] that finding the value of the maximum flow from the

source to the sink is equivalent to finding the value of the minimum cut.

S

T

S

Sky

T

Rest

Pixels

Figure 3.1: In the graph the source node S represents the sky, the sink node T represents the

rest and the other nodes represent the pixels of the image. The minimum cut separates the pixels

into two sets, one belonging to the sky S and one belonging to the rest T .

In our algorithm a quadratic pseudo-boolean function is used to represent the energy func-

tion to minimize for labeling the sky and the rest (cf. Equation 3.1). It is a energy function of

boolean variables that maps a boolean vector to a real value. Let xi ∈ B = {0, 1} where

i = 1, 2, ..., n represent boolean random variables. These variables represent the boolean labels

(sky and rest) of the pixels in the image. Let θ denote the parameters in the energy function. The

parameter vector θ consists of unary terms θi;a and pairwise terms θij;ab, where i, j = 1, 2, ..., n

and a, b ∈ B. These parameters are also referred to as unary and pairwise potentials. The unary

parameter θi;a can be seen as a pseudo-boolean function f : B → R that gives the cost when

xi = a. Similarly, a pairwise parameter θij;ab is a pseudo-boolean function f : B
2 → R that
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gives the cost when xi = a and xj = b. The function mapping partitions to energies is then

E(x|θ) =
∑

i∈V

[θi;0xi + θi;1xi] +
∑

(i,j)∈E

[θij;00xixj + θij;01xixj + θij;10xixj + θij;11xixj ] (3.1)

It is important to note that minimizing E(x|θ) + C (where C is a constant) is similar to mini-

mizing E(x|θ): the same boolean vector [x1, ..., xn] minimizes E(x|θ) + C and E(x|θ).

In order to minimize this function a graph is constructed with a node for each boolean

random variable xi ∈ B. The minimal cut will give the binary labeling of all the vertices of the

graph which minimize the function. If the function is submodular the energy can be represented

by a graph [21]. A function is called submodular if and only if for each couple (i, j) (θij;00 +

θij;11) ≤ (θij;01 + θij;10). The submodularity condition is the discrete analogues of convex

functions in continuous domains. It can been seen on the Figure 3.3 that if the submodularity

condition is not respected the pairwise cost of the graph becomes negative and hence the min-

cut problem becomes NP -hard and cannot be solved by a maximum flow algorithm. The

construction of the graph for the quadratic energy function is described bellow.

Firstly let us construct a graph for an energy function containing only unary terms:

E(x|θ) =
∑

i∈V

[θi;0xi + θi;1xi] (3.2)

The function can be factorized:

E(x|θ) =











∑

i∈V [θi;0 + (θi;1 − θi;0)xi] if (θi;1 − θi;0) ≥ 0

∑

i∈V [θi;1 + (θi;0 − θi;1)xi] if (θi;0 − θi;1) ≥ 0.
(3.3)

The above energy function is represented in a graph shown in Figure 3.2.

Then let us construct a graph for an energy function containing only pairwise terms:

E(x|θ) =
∑

(i,j)∈E

[θij;00xixj + θij;01xixj + θij;10xixj + θij;11xixj ] (3.4)
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S=0 S=0

T=1 T=1

if (θi;1 − θi;0) ≥ 0 if (θi;0 − θi;1) ≥ 0

θi;1 − θi;0

θi;0 − θi;1

xixi

Figure 3.2: Graph construction in the case of an energy function containing only unary costs.

The function can be factorized as follows:

E(x|θ) = (θij;01+θij;10−θij;00−θij;11)xixj+(θij;10−θij;00)xi+(θij;10−θij;11)xj+(θij;00+θij;11−θij;10)

(3.5)

The graph construction for the above pairwise energy function is shown in Figure 3.3.

S=0

T=1

θij;10 − θij;00

θij;10 − θij;11

θij;01 + θij;10 − θij;00 − θij;11

xi xj

Figure 3.3: Graph construction in the case of an energy function containing only pairwise costs.

The energy function is the sum of the unary and pairwise terms, hence the final graph

used for minimizing the energy function is constructed by merging the graphs for unary and

pairwise terms as per the additivity property shown in [21].
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3.2 Parameter Learning

In order to avoid the hand tuning of the parameters of the energy function, the parameters

are learned automatically from a hand labeled training set. The discriminating power of the

model is optimized by estimating parameters that maximize the difference between ground truth

labelings and all other labelings. Near-miss labelings are generated, and a parameter vector that

maximizes the margin separating true labelings from the near misses in a convex optimization is

estimated. This operation is done repeatedly and the process converges to an optimal parameter

vector in a small number of iterations [35]. In the current implementation the unary likelihood

for sky and rest are obtained using their color values. A Gaussian model is first estimated for

the classes sky and rest and the mean and covariance are computed using manually segmented

ground truth images. For a new test image the unary likelihood is obtained by computing the

Mahalanobis distance to the sky and non-sky classes as shown in Figures 3.4. The energy

(a) (b) (c)

Figure 3.4: (a) Original image. (b) Likelihood for the sky. (c) Likelihood for the rest of the

image. The brighter values correspond to higher likelihood.

function is reformulated by decomposing the unary parameters θi;a as follows:

θi;a = θp
a + liθ

l
a (3.6)
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Once the likelihood cost li is computed for every node the unary parameters θp
a and θl

a are only

dependent of the label a. Similarly the pairwise parameters θij;ab are also assumed independent

of the associated nodes i and j and are replaced by θab. Due to the problem nature, the pairwise

matrix is assumed symmetric. i.e. θ01 = θ10. We denote the new parameter vector which we

want to learn as Θ.

Θ =

[

θ
p
0 θl

0 θ
p
1 θl

1 θ00 θ01 θ11

]

(3.7)

The parameter vector Θ is then estimated via the standard convex program for linear sup-

port vector machines (SVMs), using vectors of unary and pairwise statistics from true labelings

and near miss labelings as positive and negative examples. In order to guarantee that the esti-

mated model supports optimal inference, the convex program is augmented with a constraint on

the pairwise terms in the parameter vector that guarantees submodularity. As mentioned before,

in the binary case the constraint is simply

θ00 + θ11 ≤ 2θ01 (3.8)

θ
p
0 1

θl
0 -1

θ
p
1 -0.03708

θl
1 -0.0935

θ00 -0.5638

θ01 0.2487

θ11 0.3151

Accuracy (%) 94.2

Table 3.1: The learned parameters of the energy function. Note that the pairwise parameters

satisfy the submodularity condition, as imposed in our learning framework. The accuracy figure

in the last row is the percentage of correctly classified sky pixels in the training set.
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3.3 Matching and Distance Transform

In order to match the real skyline with the synthetic one, a RANSAC based chamfer

matching has been proposed. The chamfer distance is generally used to measure similarity

between two shapes and can be used to find the location of a template shape in an edge map.

The idea of the chamfer matching is to minimize the mean distance between the edge pixels

of a template shape and their closest correspondences on the edge map. Formally, let T be a

template image, E an edge map and pT and pE the location of an edge pixel respectively in

T and E. The chamfer matching consists of finding the position that minimizes the chamfer

distance (Cd(T, E)):

Cd(T, E) =
1

|T |

∑

pT∈T

min
pE∈E

‖pT − pE‖2 (3.9)

The chamfer distance can be efficiently computed with the distance transform map of the

edge map image. The distance transform (Dt) stores for each pixels p the distance to the closest

edge pixel pE and can be computed in linear time [9].

Dt(p) = min
pE∈E

‖p − pE‖2 (3.10)

Hence the expression for chamfer distance shown in Equation 3.9 can be written using

the distance transform as:

Cd(T, E) =
1

|T |

∑

pT∈T

Dt(pT ) (3.11)

The chamfer matching algorithm already gives good geolocalization when the sky detec-

tion and the 3D model are reasonably accurate. However the algorithm fails in the presence

of occlusions from trees, sun, etc. In order to handle these problems, we propose a robustified

version of the chamfer matching using RANSAC. With the conventional chamfer distance, the

outliers contribute to the estimation of the location and the orientation. As a result, depending
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on the number and nature of these outliers the correct solution can drift as shown in Figure 3.5(c)

and Figure 3.6(a).

Our goal is to identify and remove these outliers in the matching algorithm. In order to do

this, a RANSAC based chamfer distance has been developed. Our algorithm finds the position

that minimize the number of pixels that have their distance to their closest correspondences

above a threshold τ . Hence, it consists of finding the position that minimize the following cost

function:

Crd(T, E) =
1

|T |

∑

pT∈T

f(Dt(pT )) (3.12)

where

f(x) =











1 if x > τ

0 otherwise

(3.13)

It is also possible to consider the orientation of the edge pixels in deciding whether a pixel

is an inlier or not. First, we identify the pixels closest to the template pixels considering only

the distance and refer to them as their correspondences. For each pixel p, the location of the

corresponding edge pixel pE is stored in an argument distance transform (Adt):

Adt(p) = arg min
pE∈E

‖p − pE‖2 (3.14)

A template pixel is considered to be an outlier if the distance to its corresponding pixel is greater

than τ and the difference of orientation with its correspondence above η. Let us represent the

normalized gradient information of an edge pixel p as −→g (p). The final RANSAC cost function

embedded in our algorithm is given below:

Crdθ =
1

|T |

∑

pT∈T

h(Dt(pT ), |−→g (pT ) · −→g (Adt(pT ))|) (3.15)

where
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(a) (b) (c) (d)

Figure 3.5: We show the comparison of skyline matching using conventional chamfer distance

and our robustified approach. The original skyline before perturbation is shown in (a). A sig-

nificant part of this skyline is removed as shown in (b). The matching results for the perturbed

skyline using conventional chamfer matching and our algorithm are shown in (c) and (d) re-

spectively. Note that there is a big drift from the correct location in (c). On the other hand, our

algorithm gets the correct location without any drift as shown in (d).

h(x, y) =











1 if x > τ or y > η

0 otherwise

(3.16)

In our implementation a symmetric cost function (Crdθ(T, E)+Crdθ(E, T )) is used where

T and E refer to the synthetic and real skylines respectively.

The improvement between the RANSAC and the chamfer distance can be interpreted in

terms of l0 and l1 norm minimization. The cost function of the conventional chamfer matching

as shown in Equation 3.11 is an l1 norm minimization of the closest distances. On the other

hand, the cost function in Equation 3.12 is an l0 norm minimization of the closest distances.

The l0 norm minimization is known to be more robust to outliers than l1 norm minimization

because the outliers are avoided in the cost function. As a l0 norm minimization is used, we

are very restrictive about our inlier selection. Hence, both distances and orientations are used

in choosing the inliers rather than one of them.

The robustness of our proposed matching algorithm is shown in a simple simulation (cf.

Figure 3.5) where a correct skyline is manually perturbed and matched using both the conven-

tional chamfer matching and our algorithm. In the case of the chamfer matching, there is a drift

in the location and orientation due to the outliers. On the other hand, our approach gives the
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(a) (b)

Figure 3.6: We show the matching results for a real image with slightly incorrect sky detection

(red zone) due to an occluding tree. In (a) we show the incorrect matching using a conventional

chamfer matching. In (b) we show a relatively better localization using our RANSAC based

algorithm.

correct solution in spite of the perturbation. The robustness is also shown in a real experiments

using fisheye images. In Figure 3.6, the sky detection is inaccurate due to the presence of a

tree and contrary to the chamfer distance the RANSAC approach is able to get the correct lo-

calization in spite of this problem. A detailed analysis of our experimental results is given in

Chapter 5, and some sky detection and matching results are shown in Figure 5.6 for Boston and

in Figure 5.7 for New York.

Our RANSAC based cost can be efficiently computed in linear time. Moreover in our

software, we have implemented a Sobel edge detection with non maxima suppression in GLSL

and the distance transform with CUDA and OpenMP. Hence, the matching process is very fast,

and a wide number of synthetic fisheye images can be generated and matched in few seconds.
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Rendering of 3D Cities

This chapter presents the software engineering of our geolocalization system. An object-

oriented methodology is used to develop the system. All the components are designed as

classes and methods for re-usability. The program is developed in C++ and rely on different

API: OpenGL (Open Graphics Library) and the shader programming language GLSL (OpenGL

Shading Language) are used for graphics rendering and image processing, OpenMP (Open

Multi-Processing) and CUDA (Compute Unified Device Architecture) are used to parallelize

functions which cannot be implemented efficiently in GLSL. The algorithms have been paral-

lelized between the multi cores of the CPU and the GPU. The code has been cleverly engineered

to give the best performances for a wide range of architectures and data size. The discussion in

this chapter will mainly focus on the rendering engine.

4.1 Mesh Rendering

In this section the techniques used to pre-process the 3D models and to render them is

explained. The pre-processing step is mandatory for our 3D engine because the models are

downloaded from internet. These models are usually available in several 3D formats and their

scales, positions and orientations in the world coordinate system are unknown and can be widely
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different from one to another model.

4.1.1 Coordinate transformation of the 3D model:

The downloaded 3D models are transformed in order that the ground plane of the 3D

model corresponds to the world coordinate system XY plane and that the vertical orientation of

the buildings corresponds to the Z axis (cf. Figure 4.1). In order to achieve this, the 3D model

is rotated and translated. First, a principal component analysis (PCA) is performed on the

vertices of the 3D model. The three principal components correspond to the ground plane and

vertical orientation of the buildings. Using these principal components the vertical orientation

is aligned with the Z axis of the world coordinate system. By doing this we already bring the

ground plane of the 3D model parallel to the XY plane of the world coordinate system. Next,

the ground plane of the 3D model is centered on the Z axis and translated in order to have the

minimum Z value of the model equal to 0. Finally, as the downloaded models are not very

precise, the heights of various buildings (expressed in meters) are used to compute the scale

factor. Using this scale factor, the entire 3D model is scaled such that 1 meter in the real world

corresponds to 1 unit in the 3D model.

Figure 4.1: The mesh is automatically translated and rotated in order to be aligned with the

XY plane of the world coordinate system.
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4.1.2 Frustum and Back-face Culling:

To render the mesh containing billions of triangles efficiently, the 3D model is directly

loaded in the graphic card memory by using a vertex buffer object (VBO) which avoid the

repetitive transfer of data between the RAM and the VRAM. Second, the model is batched to

reduce the number of API calls for the drawing. Finally, two techniques have been implemented

in a geometry shader in order to speedup the frame rate: the frustum culling and the back-face

culling. The frustum culling allows to render only the triangles inside the frustum of the camera

and the back-face culling allows to render only the triangles facing the camera. With these

two techniques, a large amount of triangles are not send to the rasterizer stage saving a lot of

operations. Due to the recent development of the geometry shader both frustum and back-face

culling can be implemented efficiently. Most of the time our geolocalization system synthesizes

fisheye images under various poses. In this operation few triangles from the buildings are inside

the frustum. In addition, because of the buildings topology only few triangles face the camera.

As a result, less than 20% of the triangles are sent to the rasterization stage. A schematic

diagram demonstrating the advantages of frustum and back-face culling is shown in Figure 4.2.

Figure 4.2: The frustum and the back-face culling remove for each of the perspective views a

large number of faces (in red) and keep only few faces (in green).
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4.2 Graphical User Interface:

The interface of the software has been designed for best visualization and algorithmic

analysis as shown in Figure 4.3. The interface provides the following functionalities.

• The user can freely navigate in the 3D model.

• For each position, the matching result between the real and the synthetic skylines can be

visualized.

• The position of the user is displayed in an aerial view of the city.

Figure 4.3: On the top left, the location of the car is displayed (using a blue cross) on an

orthographic aerial image of the city where the user can move and zoom in/out. In the aerial

map, the road (gray) and the buildings (white) are classified using the Z values. More details

are given in the Figure 4.4. On the top right, the real fisheye image is shown. The synthesized

fisheye image and the skyline matching are shown on the bottom right and left respectively. The

user can freely navigate the 3D model displayed in the middle and simultaneously observe the

associated images in all the four corners.
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(a) (b) (c)

Figure 4.4: The various steps in creating an aerial image displaying buildings and roads from

the 3D model of a city (a) Orthographic depth map (b) Detection of buildings using the Z values

(c) Localization of the car on the aerial image.

Figure 4.5: The matching locations and orientations founded by the algorithm are display in

the 3D model.



Chapter 5

Experimental Results and Discussion

In this section we discuss the various simulations and real experiments conducted on the

3D models of Boston Financial district, Boston’s North End and New York in order to validate

our algorithm.

5.1 Dataset

The real fisheye images are captured using a Nikon Coolpix E8 fisheye lens in Boston and

New York. The Boston 3D models used for the experimentation is downloaded for free from:

www.bostonredevelopmentauthority.org/BRA 3D Models/Index.html

And the New York 3D models has been purchased from the following website:

www.3dcadbrowser.com

On this website several other 3D models of cities (Boston, Las Vegas, San Francisco, etc) can

also be purchased.

5.2 Simulations

Uniqueness of the skylines: In order to investigate how unique the skylines fingerprint is, 16

random locations are selected on the 3D model of the Financial District of Boston where tall
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building can be founded (cf. Figure 5.1(a)). For each of these locations 27 synthetic fisheye

images are generated by translations along X, Y and Z directions, separated each by 25cm. For

the total of 432 images, a confusion matrix is obtained by computing the chamfer distance for

all possible pairs (cf. Figure 5.3(a)). For every point, the first 27 closest matches correspond

directly to its nearby locations. The same experiment is conducted in Boston’s North End

where the buildings are short (cf. Figure 5.1(b)). The experiments demonstrate that the skyline

matching algorithm can be robust even if the buildings are short. Surprisingly, the confusion

matrix of the North End locations (cf. Figure 5.3(b)) indicates even better location fingerprinting

than the confusion matrix of the Financial District.

(a) (b)

Figure 5.1: The 3D models of (a) Boston’s Financial District which has tall buildings and of (b)

Boston’s North End which has smaller buildings.

To study more precisely how a skyline varies for small translations and rotations from

the correct location, 100 images has been generated for translations on the XY , Y Z and XZ

plane and rotations around X and Y axis, Y and Z axis and X and Z axis (cf. Figure 5.2).

The translations vary from -10 to 10 units where one unit corresponds to 25cm and the rotations

vary from -10◦ to 10◦. The result shows that the correct location has the lowest chamfer score,

and that the skyline is more perturbed with the rotation than with the translation.

Advantage of Omni-directional camera: In order to assess the benefit of omni-directional

cameras, the same experiment of computing the confusion matrix is conducted with a perspec-

tive camera in the Financial District. A perspective camera model with a field of view of 90◦

is used and the images are synthesized at exactly the same locations in the financial district
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: Chamfer distance error (average pixel distance) between the skylines from real

and synthetic images for translation (a-c) and rotation (g-i) from the correct location. The

translations vary from -10 to 10 units where one unit corresponds to 25cm and the rotations

vary from -10◦ to 10◦. The change in shape of the skylines is also studied for small perturbations

in translation (X in (d),Y in (e), Z in (f)) and rotation parameters (Rx in (j), Ry in (k) and Rz in

(l)). A color-coding is used to display the change in shape of the skylines. The skylines drawn

in blue, green and red show the initial, intermediate and final shapes.
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(a) (b)

Figure 5.3: Confusion matrices computed using 432 fisheye images synthesized at various lo-

cations in Boston’s financial district (a) and in Boston’s north end (b).

that were chosen for the fisheye experiment. The confusion matrix (cf. Figure 5.4) indicates

very clearly the large number of ambiguities between different skylines. The primary difference

comes from the fact that the skylines imaged on the fisheye model covers a much longer stretch

of the street and thus of the skyline, when compared to the perspective case.

Figure 5.4: Confusion matrix computed for synthesized perspective views with a field of view

of 90◦ in the financial district of Boston at exactly the same locations where the one shown in

Figure 5.3(a)

5.3 Real Experiments

The real experiments were conducted by capturing 250 fisheye images for approximately

2 kilometers in the Financial district of Boston as shown in Figure 5.5, and 1 kilometer in
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New York city. Some of the sky detection and matching results for these cities are shown in

Figure 5.6 and Figure 5.7.

(a) (b)

Figure 5.5: Result of the matching algorithm in Boston Downtown, the experiment was conduct

over 2km where 250 images have been taken.

The accuracy of the algorithm is evaluated by comparing it with a commercial GPS unit

”Garmin Nüvi 255W”. Upward facing fisheye images and GPS measurements were collected

for 30 locations in a street of the Financial District. The average height of the buildings in this

street is around 50 meters and the average width of the street is 15 meters (cf. Figure 5.8).

The images were collected at the boundary between the sidewalk and the road. We register the

real trajectory (boundary between road and sidewalk), GPS measurements and our localization

results on an aerial image obtained from Google Earth. In order to compare the result of our

algorithm the aerial map of the 3D model is registered over Google Earth by manually clicking

corresponding points and by computing the transformation matrix with a least square solution

(cf. Figure 5.9). The mean error for the GPS is 29 meters and the mean error for our algorithm

is 2.8 meters (cf. Figure 5.10). One of the reasons for the degraded performance of GPS is due

to poor satellite reception (because of tall buildings). By comparing the heights of 20 buildings

in our 3D model with the ones in Google Earch a discrepancy up to 12 meters is measured.
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Figure 5.6: Some results of the matching algorithm for the Boston data set. The rows show in

order the original, the sky detected and the skyline matched images (ordered from left to right).
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Figure 5.7: Some results of the matching algorithm for the New York data set. The rows show in

order the original, the sky detected and the skyline matched images (ordered from left to right).
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Our algorithm was able to achieve good results even with such imprecise 3D models because of

the usage of RANSAC in our framework. Thus the precision of our method can even improve

further with more accurate 3D models.

Figure 5.8: Google Earth view of the street used for the experimentation of the GPS accuracy.

(a) (b) (c)

Figure 5.9: Result of the registration (c) of the binary orthographic aerial view of the 3D model

(a) over the Google Earth map (b).

Our results clearly demonstrate that it is possible to outperform GPS measurements in

urban scenes, which are known to be extremely problematic for commercial GPS units. More-

over, contrary to the GPS, our algorithm also provides the orientation (cf. Figure 4.5). In the
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Figure 5.10: We compare the accuracy of commercial a GPS units and our fisheye-based system

in the Financial District (tall buildings) using 31 sample points. The blue line shows the ground

truth (although not completely accurate as it is manually marked on the boundary between the

road and sidewalk), and the red and green lines mark the piece-wise linear curves of 31 points

obtained from GPS measurements and skyline-based geolocalization respectively.

future we expect to improve speed and robustness of our algorithm by using other vision al-

gorithms: interest point matching/tracking between consecutive frames, structure from motion

algorithms, Kalman filtering, and other priors based on street map information. It is important

to note that the current GPS systems have been improved and robustified for several years by

addressing various complicated issues that even includes theory of relativity. In a few years,

we strongly believe that it is possible to build an inexpensive, robust and accurate vision based

GPS.
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