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Figure 1: Our system captures and tracks the facial expression dynamics of the users (grey renderings) in realtime and maps them to a
digital character (colored renderings) on the opposite screen to enable engaging virtual encounters in cyberspace.

Abstract

This paper presents a system for performance-based character ani-
mation that enables any user to control the facial expressions of a
digital avatar in realtime. The user is recorded in a natural envi-
ronment using a non-intrusive, commercially available 3D sensor.
The simplicity of this acquisition device comes at the cost of high
noise levels in the acquired data. To effectively map low-quality 2D
images and 3D depth maps to realistic facial expressions, we intro-
duce a novel face tracking algorithm that combines geometry and
texture registration with pre-recorded animation priors in a single
optimization. Formulated as a maximum a posteriori estimation in
a reduced parameter space, our method implicitly exploits temporal
coherence to stabilize the tracking. We demonstrate that compelling
3D facial dynamics can be reconstructed in realtime without the use
of face markers, intrusive lighting, or complex scanning hardware.
This makes our system easy to deploy and facilitates a range of new
applications, e.g. in digital gameplay or social interactions.
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1 Introduction

Capturing and processing human geometry, appearance, and mo-
tion is at the core of modern computer animation. Digital actors are
often created through a combination of 3D scanning, appearance
acquisition, and motion capture, leading to stunning results in re-
cent feature films. However, these methods typically require com-
plex acquisition systems and substantial manual post-processing.
As a result, creating high-quality character animation entails long
turn-around times and substantial production costs. Recent devel-
opments in gaming technology, such as the Nintendo Wii and the
Kinect system of Microsoft, focus on robust motion tracking for
compelling realtime interaction, while geometric accuracy and ap-
pearance are of secondary importance. Our goal is to leverage these
technological advances and create a low-cost facial animation sys-
tem that allows arbitrary users to enact a digital character with a
high level of realism.

We emphasize usability, performance, and robustness. Usability in
our context means ease of deployment and non-intrusive acquisi-
tion. These requirements put severe restrictions on the acquisition
system which in turn leads to tradeoffs in the data quality and thus
higher demands on the robustness of the computations. We show
that even a minimal acquisition system such as the Kinect can en-
able compelling realtime facial animations. Any user can operate
our system after recording a few standard expressions that are used
to adapt a facial expression model.

Contributions. Our main contribution is a novel face tracking al-
gorithm that combines 3D geometry and 2D texture registration in
a systematic way with dynamic blendshape priors generated from
existing face animation sequences. Formulated as a probabilistic
optimization problem, our method successfully tracks complex fa-
cial expressions even for very noisy inputs. This is achieved by
mapping the acquired depth maps and images of the performing
user into the space of realistic facial expressions defined by the an-
imation prior. Realtime processing is facilitated by a reduced facial
expression model that can be easily adapted to the specific expres-
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Figure 2: Overview of the online processing pipeline. The blendshape weights that drive the digital avatar are estimated by matching a user-
specific expression model to the acquired 2D image and 3D depth map. A probabilistic animation prior learned from existing blendshape
sequences regularizes the tracking. Temporal coherence is exploited by considering a window of consecutive frames.

sion space and facial geometry of different users. We integrate these
components into a complete framework for realtime, non-intrusive,
markerless facial performance capture and animation (Figure 1).

1.1 Related Work

Facial performance capture and performance-driven animation have
been active research areas in recent years, with a plethora of differ-
ent acquisition systems and processing pipelines that share many
fundamental principles as well as specific implementation details.
Performance-based facial animation typically consists of a non-
rigid tracking stage (often with a parametric template model) fol-
lowed by an expression retargeting procedure. A full review of
these systems is beyond the scope of this paper and we refer
to [Pighin and Lewis 2006] for a more detailed discussion.

One fundamental tradeoff in all of these systems is the relation be-
tween the quality of the acquired data and the complexity of the
acquisition setup. On one end of the spectrum are systems de-
signed for greatest possible accuracy that lead to stunning virtual
avatars suitable for movie production. Because of their robustness,
marker-based techniques [Williams 1990; Guenter et al. 1993; Lin
and Ouhyoung 2005] are widely used for realtime facial animation
and generally deliver sufficient motion parameters for convincing
retargeting of non-human creatures or simple game characters.

For the realistic digitization of human faces, markerless approaches
such as realtime 3D scanners are usually more advantageous due to
their ability to capture fine-scale dynamics (e.g. wrinkles and folds).
All these methods involve highly specialized sensors and/or con-
trolled studio environments [Zhang and Huang 2004; Borshukov
et al. 2005; Ma et al. 2007; Beeler et al. 2010; Bradley et al. 2010].
High-resolution facial motion is generally recovered through vari-
ants of non-rigid registration and tracking algorithms across se-
quences of input geometry, texture, or both [Zhang et al. 2004;
Furukawa and Ponce 2009; Alexander et al. 2009; Li et al. 2009;
Weise et al. 2009; Bradley et al. 2010; Wilson et al. 2010]. With a
focus on precision, these systems are not designed to achieve inter-
active performance in general environments, a crucial requirement
for the type of consumer-level applications targeted by our work.
The method of Weise et al. [2009] achieves realtime performance
using a customized PCA tracking model, which requires an addi-
tional animation retargeting step based on deformation transfer to
animate different characters. As their structured-light scanner gen-
erates high quality depth maps, online tracking can be limited to
geometry registration only.

On the other end of the tradeoff between data quality and hardware
complexity are passive, single camera systems that have been a fo-
cus of research in computer vision. Most commonly, 2D parametric
shape models have been used for non-rigid tracking [Li et al. 1993;
Black and Yacoob 1995; Essa et al. 1996; DeCarlo and Metaxas

1996; Pighin et al. 1999]. However, due to the additional chal-
lenges posed by uncontrolled lighting environments and unreliable
textures, tracking is usually limited to facial features such as eyes,
eyebrows, pupils, or inner and outer contours of the lips. Estab-
lished methods such as active appearance models [Cootes et al.
2001] or Eigen-Points [Covell 1996] employ a probabilistic prior
model built from large sets of training data to achieve realtime per-
formance while preventing drifts. As demonstrated in Chuang and
Bregler [2002], these parametric models can be used to reliably syn-
thesize simple facial expressions for virtual avatars but inherently
lack in facial details. Chai and colleagues [Chai et al. 2003] first
extract 2D animation controls using feature tracking and then map
these controls to 3D facial expressions using a preprocessed motion
capture database to reduce tracking artifacts.

Our goal is to maintain the flexibility, ease of deployment, and non-
intrusive acquisition of passive, single camera acquisition, but push
the quality of the reconstruction towards that achieved with com-
plex, special-purpose hardware setups. For this purpose we follow
the established strategy of using existing animation data for regu-
larization. However, instead of performing a separate post-filtering
step as in most previous work, e.g. [Lou and Chai 2010], we in-
tegrate an animation prior directly into the tracking optimization
using a maximum a posteriori estimation. Our animation prior is
based on Mixtures of Probabilistic Principal Component Analyz-
ers (MPPCA) [Tipping and Bishop 1999b], similar in spirit to [Lau
et al. 2007] who use a static pose prior for interactive design of fa-
cial geometry. In comparison to Gaussian Processes that have been
successfully employed as pose prior, e.g. [Grochow et al. 2004]
and [Ikemoto et al. 2009], MPPCA scales well with the size of the
data set, making it particularly suitable for real-time applications.

1.2 Overview

Performance-driven facial animation requires solving two main
technical challenges: We need to accurately track the rigid and
non-rigid motion of the user’s face, and map the extracted track-
ing parameters to suitable animation controls that drive the virtual
character. Our approach combines these two problems into a single
optimization that solves for the most likely parameters of a user-
specific expression model given the observed 2D and 3D data. We
derive a suitable probabilistic prior for this optimization from pre-
recorded animation sequences that define the space of realistic fa-
cial expressions. Figure 2 gives an overview of our pipeline.

Blendshape Representation. To integrate tracking and anima-
tion into one optimization, we represent facial expressions as a
weighted sum of blendshape meshes. This design choice offers a
number of advantages: A blendshape model provides a compact
representation of the facial expression space, thus significantly re-
ducing the dimensionality of the optimization problem. In addition,
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Figure 3: Acquisition of user expressions for offline model build-
ing. Aggregating multiple scans under slight head rotation reduces
noise and fills in missing data.

we can use existing blendshape animations, that are ubiquitous in
movie and game production, to define the dynamic expression pri-
ors. The underlying hypothesis here is that the blendshape weights
of a human facial animation sequence provide a sufficient level of
abstraction to enable expression transfer between different charac-
ters. Finally, the output generated by our algorithm, a temporal se-
quence of blendshape weights, can be directly imported into com-
mercial animation tools, thus facilitating integration into existing
production workflows.

Acquisition Hardware. All input data is acquired using the
Kinect system, i.e. no other hardware such as laser scanners is re-
quired for user-specific model building. The Kinect supports si-
multaneous capture of a 2D color image and a 3D depth map at 30
frames per second, based on invisible infrared projection (Figure 4).
Essential benefits of this low-cost acquisition device include ease of
deployment and sustained operability in a natural environment. The
user is neither required to wear any physical markers or specialized
makeup, nor is the performance adversely affected by intrusive light
projections or clumsy hardware contraptions. However, these key
advantages come at the price of a substantial degradation in data
quality compared to state-of-the-art performance capture systems
based on markers and/or active lighting. Ensuring robust process-
ing given the low resolution and high noise levels of the input data
is the primary challenge that we address in this paper.

2 Facial Expression Model

A central component of our tracking algorithm is a facial expres-
sion model that provides a low-dimensional representation of the
user’s expression space. We build this model in an offline prepro-

Figure 4: The Kinect simultaneously captures a 640 × 400 color
image and corresponding depth map at 30 Hertz, computed via tri-
angulation of an infrared projector and camera.
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Figure 5: Offline pre-processing for building the user-specific ex-
pression model. Pre-defined example poses of the user with known
blendshape weights are scanned and registered to a template mesh
to yield a set of user-specific expressions. An optimization solves
for the user-specific blendshapes that maintain the semantics of a
generic blendshape model. The inset shows how manually selected
feature correspondences guide the reconstruction of user-specific
expressions.

cessing step by adapting a generic blendshape model with a small
set of expressions performed by the user. These expressions are
captured with the Kinect prior to online tracking and reconstructed
using a morphable model combined with non-rigid alignment meth-
ods. Figure 5 summarizes the different steps of our algorithm for
building the facial expression model. We omit a detailed description
of previous methods that are integrated into our algorithm. Please
refer to the cited papers for parameter settings and implementation
details.

Data Capture. To customize the generic blendshape rig, we
record a pre-defined sequence of example expressions performed
by the user. Since single depth maps acquired with the Kinect ex-
hibit high noise levels, we aggregate multiple scans over time using
the method described in [Weise et al. 2008] (see Figure 3). The user
is asked to perform a slight head rotation while keeping the expres-
sion fixed (see accompanying video). Besides exposing the entire
face to the scanner, this rotational motion has the additional benefit
of alleviating reconstruction bias introduced by the spatially fixed
infrared dot pattern projected by the Kinect. We use the method
of [Viola and Jones 2001] to detect the face in the first frame of the
acquisition and accumulate the acquired color images to obtain the
skin texture using Poisson reconstruction [Pérez et al. 2003].

Expression Reconstruction. We use the morphable model of
Blanz and Vetter [1999] to represent the variations of different hu-
man faces in neutral expression. This linear PCA model is first reg-
istered towards the recorded neutral pose to obtain a high-quality
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Figure 6: The colored region on the left indicates the portion of the
face used for rigid tracking. The graph on the right illustrates how
temporal filtering adapts to the speed of motion.

template mesh that roughly matches the geometry of the user’s face.
We then warp this template to each of the recorded expressions us-
ing the non-rigid registration approach of [Li et al. 2009]. To im-
prove registration accuracy, we incorporate additional texture con-
straints in the mouth and eye regions. For this purpose, we man-
ually mark features as illustrated in Figure 5. The integration of
these constraints is straightforward and easily extends the frame-
work of [Li et al. 2009] with positional constraints.

Blendshape Reconstruction. We represent the dynamics of fa-
cial expressions using a generic blendshape rig based on Ekman’s
Facial Action Coding System (FACS) [1978]. To generate the full
set of blendshapes of the user we employ example-based facial rig-
ging as proposed by Li et al. [2010]. This method takes as input a
generic blendshape model, the reconstructed example expressions,
and approximate blendshape weights that specify the appropriate
linear combination of blendshapes for each expression. Since the
user is asked to perform a fixed set of expressions, these weights are
manually determined once and kept constant for all users. Given
this data, example-based facial rigging performs a gradient-space
optimization to reconstruct the set of user-specific blendshapes that
best reproduce the example expressions (Figure 5). We use the
same generic blendshape model with m = 39 blendshapes in all
our examples.

3 Realtime Tracking

The user-specific blendshape model defines a compact parameter
space suitable for realtime tracking. We decouple the rigid from
the non-rigid motion and directly estimate the rigid transform of
the user’s face before performing the optimization of blendshape
weights. We found that this decoupling not only simplifies the for-
mulation of the optimization, but also leads to improved robustness
of the tracking.

Rigid Tracking. We align the reconstructed mesh of the previous
frame with the acquired depth map of the current frame using ICP
with point-plane constraints. To stabilize the alignment we use a
pre-segmented template (Figure 6, left) that excludes the chin re-
gion from the registration as this part of the face typically exhibits
the strongest deformations. As illustrated in Figure 7 this results in
robust tracking even for large occlusions and extreme facial expres-
sions. We also incorporate a temporal filter to account for the high-
frequency flickering of the Kinect depth maps. The filter is based
on a sliding window that dynamically adapts the smoothing coef-
ficients in the spirit of the exponentially weighted moving average
method [Roberts 1959] to reduce high frequency noise while avoid-
ing disturbing temporal lags. We independently filter the translation
vector and quaternion representation of the rotation. For a transla-
tion or quaternion vector ti at the current time frame i, we compute

Figure 7: Robustly tracking the rigid motion of the face is crucial
for expression reconstruction. Even with large occlusions and fast
motion, we can reliably track the user’s global pose.

the smoothed vector as weighted average in a window of size k as

t?i =

∑k
j=0 wjti−j∑k

j=0 wj

(1)

where ti−j denotes the vector at frame i − j. The weights wj are
defined as

wj = e−j·H·maxl∈[1,k] ||ti−ti−l||, (2)

with a constant H that we empirically determine independently for
rotation and translation based on the noise level of a static pose. We
use a window size of k = 5 for all our experiments.

Scaling the time scale with the maximum variation in the temporal
window ensures that less averaging occurs for fast motion, while
high-frequency jitter is effectively removed from the estimated rigid
pose (Figure 6, right). As shown in the video, this leads to a stable
reconstruction when the user is perfectly still, while fast and jerky
motion can still be recovered accurately.

Non-rigid Tracking. Given the rigid pose, we now need to esti-
mate the blendshape weights that capture the dynamics of the facial
expression of the recorded user. Our goal is to reproduce the user’s
performance as closely as possible, while ensuring that the recon-
structed animation lies in the space of realistic human facial expres-
sions. Since blendshape parameters are agnostic to realism and can
easily produce nonsensical shapes, parameter fitting using geome-
try and texture constraints alone will typically not produce satisfac-
tory results, in particular if the input data is corrupted by noise (see
Figure 8). Since human visual interpretation of facial imagery is
highly sophisticated, even small tracking errors can quickly lead to
visually disturbing artifacts.

3.1 Statistical Model

We prevent unrealistic face poses by regularizing the blendshape
weights with a dynamic expression prior computed from a set of
existing blendshape animations A = {A1, . . . , Al}. Each anima-
tion Aj is a sequence of blendshape weight vectors ai

j ∈ Rm that
sample a continuous path in the m-dimensional blendshape space.
We exploit temporal coherence of these paths by considering a win-
dow of n consecutive frames, yielding an effective prior for both the
geometry and the motion of the tracked user.

MAP Estimation. Let Di = (Gi, Ii) be the input data at the
current frame i consisting of a depth map Gi and a color im-
age Ii. We want to infer from Di the most probable blendshape
weights xi ∈ Rm for the current frame given the sequence Xi

n =
xi−1, . . . ,xi−n of the n previously reconstructed blendshape vec-
tors. Dropping the index i for notational brevity we formulate this
inference problem as a maximum a posteriori (MAP) estimation

x? = arg max
x

p(x|D,Xn), (3)



where p(·|·) denotes the conditional probability. Using Bayes’ rule
we obtain

x? = arg max
x

p(D|x, Xn)p(x, Xn). (4)

Assuming that D is conditionally independent of Xn given x, we
can write

x? ≈ arg max
x

p(D|x)︸ ︷︷ ︸
likelihood

p(x, Xn)︸ ︷︷ ︸
prior

. (5)

Prior Distribution. To adequately capture the nonlinear structure
of the dynamic expression space while still enabling realtime per-
formance, we represent the prior term p(x, Xn) as a Mixtures of
Probabilistic Principal Component Analyzers (MPPCA) [Tipping
and Bishop 1999b]. Probabilistic principal component analysis
(PPCA) (see [Tipping and Bishop 1999a]) defines the probabil-
ity density function of some observed data x ∈ Rs by assuming
that x is a linear function of a latent variable z ∈ Rt with s > t,
i.e.,

x = Cz + µ+ ε, (6)

where z ∼ N (0, I) is distributed according to a unit Gaussian,
C ∈ Rs×t is the matrix of principal components, µ is the mean
vector, and ε ∼ N (0, σ2I) is a Gaussian-distributed noise variable.
The probability density of x can then be written as

p(x) = N (x|µ,CCT + σ2I). (7)

Using this formulation, we define the prior in Equation 5 as a
weighted combination of K Gaussians

p(x, Xn) =

K∑
k=1

πkN (x, Xn|µk, CkC
T
k + σ2

kI). (8)

with weights πk. This representation can be interpreted as a
reduced-dimension Gaussian mixture model that attempts to model
the high-dimensional animation data with locally linear manifolds
modeled with PPCA.

Learning the Prior. The unknown parameters in Equation 8 are
the means µk, the covariance matrixes CkC

T
k , the noise parame-

ters σk, and the relative weights πk of each PPCA in the mixture
model. We learn these parameters using the Expectation Maximiza-
tion (EM) algorithm based on the given blendshape animation se-
quences A. To increase the robustness of these computations, we
estimate the MPPCA in a latent space of the animation sequences
A using principal component analysis. By keeping 99% of the to-
tal variance we can reduce the dimensionality of the training data
by two-thirds allowing a more stable learning phase with the EM
algorithm. Equation 8 can thus be rewritten as

p(x, Xn) =

K∑
k=1

πkN (x, Xn|Pµk + µ, PMPT ), (9)

where M = (CkC
T
k + σ2

kI) is the covariance matrix in the latent
space, P is the principal component matrix, and µ the mean vector.
Since the EM algorithm converges to local minima, we run the al-
gorithm 50 times with random initialization to improve the learning
accuracy. We use 20 Gaussians to model the prior distribution and
we use one-third of the latent space dimension for the PPCA di-
mension. More details on the implementation of the EM algorithm
can be found in [McLachlan and Krishnan 1996].

input data without prior with prior

Figure 8: Without the animation prior, tracking inaccuracies lead
to visually disturbing self-intersections. Our solution significantly
reduces these artifacts. Even when tracking is not fully accurate as
in the bottom row, a plausible pose is reconstructed.

Likelihood Distribution. By assuming conditional indepen-
dence, we can model the likelihood distribution in Equation 5 as
the product p(D|x) = p(G|x)p(I|x). The two factors capture the
alignment of the blendshape model with the acquired depth map
and texture image, respectively. We represent the distribution of
each likelihood term as a product of Gaussians, treating each vertex
of the blendshape model independently.

Let V be the number of vertices in the template mesh and B ∈
RV×m the blendshape matrix. Each column of B defines a blend-
shape base mesh such that Bx generates the blendshape represen-
tation of the current pose. We denote with vi = (Bx)i the i-th ver-
tex of the reconstructed mesh. The likelihood term p(G|x) models
a geometric registration in the spirit of non-rigid ICP by assuming
a Gaussian distribution of the per-vertex point-plane distances

p(G|x) =

V∏
i=1

1

(2πσ2
geo)

3
2

exp(−||n
T
i (vi − v∗i )||2

2σ2
geo

), (10)

where ni is the surface normal at vi, and v∗i is the corresponding
closest point in the depth map G.

The likelihood term p(I|x) models texture registration. Since we
acquire the user’s face texture when building the facial expression
model (Figure 3), we can integrate model-based optical flow con-
straints [Decarlo and Metaxas 2000], by formulating the likelihood
function using per-vertex Gaussian distributions as

p(I|x) =

V∏
i=1

1

2πσ2
im

exp(−||∇I
T
i (pi − p∗i )||2

2σ2
im

), (11)

where pi is the projection of vi into the image I ,∇Ii is the gradient
of I at pi, and p∗i is the corresponding point in the rendered texture
image.



3.2 Optimization

In order to solve the MAP problem as defined by Equation 5 we
minimize the negative logarithm, i.e.,

x? = arg min
x
− ln p(G|x)− ln p(I|x)− ln p(x, Xn). (12)

Discarding constants, we write

x? = arg min
x
Egeo + Eim + Eprior, (13)

where
Eprior = − ln p(x, Xn), (14)

Egeo =
1

σ2
geo

V∑
i=1

||nT
j (vi − v∗i )||2, and (15)

Eim =
1

σ2
im

V∑
i=1

||∇ITi (pi − p∗i )||2. (16)

The parameters σgeo and σim model the noise level of the data that
controls the emphasis of the geometry and image likelihood terms
relative to the prior term. Since our system provides realtime feed-
back, we can experimentally determine suitable values that achieve
stable tracking performance. For all our results we use the same
settings σgeo = 1 and σim = 0.45.

The optimization of Equation 13 can be performed efficiently using
an iterative gradient solver, since the gradients can be computed
analytically (see the derivations in the Appendix). In addition, we
precompute the inverse covariance matrices and the determinants
of the MPPCA during the offline learning phase. We use a gradi-
ent projection algorithm based on the limited memory BFGS solver
[Lu et al. 1994] in order to enforce that the blendshape weights are
between 0 and 1. The algorithm converges in less that 6 iterations
as we can use an efficient warm starting with the previous solution.
We then update the closest point correspondences in Egeo and Eim,
and re-compute the MAP estimation. We found that 3 iterations of
this outer loop are sufficient for convergence.

4 Results

We present results of our realtime performance capture and anima-
tion system and illustrate potential applications. The output of the
tracking optimization is a continuous stream of blendshape weight
vectors {xi} that drive the digital character. Please refer to the ac-
companying video to better appreciate the facial dynamics of the
animated characters and the robustness of the tracking. Figures 1
and 9 illustrates how our system can be applied in interactive appli-
cations, where the user controls a digital avatar in realtime. Blend-
shape weights can be transmitted in realtime to enable virtual en-
counters in cyberspace. Since the blendshape representation facili-
tates animation transfer, the avatar can either be a digital representa-
tion of the user himself or a different humanoid character, assuming
compatible expression spaces.

While we build the user-specific blendshape model primarily for
realtime tracking, our technique offers a simple way to create per-
sonalized blendshape rigs that can be used in traditional animation
tools. Since the Kinect is the only acquisition device required, gen-
erating facial rigs becomes accessible for non-professional users.

input data tracked
expression model virtual avatars

blendshape base meshes

Figure 9: The user’s facial expressions are reconstructed and
mapped to different target characters in realtime, enabling inter-
active animations and virtual conversations controlled by the per-
formance of the tracked user. The smile on the green character’s
base mesh gives it a happy countenance for the entire animation.

Statistics. We use 15 user-specific expressions to reconstruct 39
blendshapes for the facial expression model. Manual markup of
texture constraints for the initial offline model building requires ap-
proximately 2 minutes per expression. Computing the expression
model given the user input takes less than 10 minutes. We pre-
compute the Gaussian mixture model that defines the dynamic ex-
pression prior from a total of 9,500 animation frames generated on
the generic template model by an animation artist. Depending on
the size of the temporal window, these computations take between
10 and 20 minutes.

Our online system achieves sustained framerates of 20 Hertz with
a latency below 150 ms. Data acquisition, preprocessing, rigid reg-
istration, and display take less than 5 ms. Nonrigid registration
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Figure 10: The combination of geometric and texture-based regis-
tration is essential for realtime tracking. To isolate the effects of the
individual components, no animation prior is used in this example.

including constraint setup and gradient optimization require 45 ms
per frame. All timing measurements have been done on a Intel I7
2.8Ghz with 8 GBytes of main memory and a ATI Radeon HD 4850
graphics card.

5 Evaluation

We focus our evaluation on the integration of 2D and 3D input data
and the effect of animation training data. We also comment on
limitations and drawbacks of our approach.

Geometry and Texture. Figure 10 evaluates the interplay be-
tween the geometry and texture information acquired with the
Kinect.

[Weise et al. 2009]     Kinect

Tracking purely based on ge-
ometry as proposed in [Weise
et al. 2009] is not successful due
to the high noise level of the
Kinect data. Integrating model-
based optical flow constraints
reduces temporal jitter and sta-
bilizes the reconstruction. In our
experiments, only the combina-

tion of both modalities yielded satisfactory results. Compared to
purely image-based tracking as e.g. in [Chai et al. 2003], direct ac-
cess to 3D geometry offers two main benefits: We can significantly
improve the robustness of the rigid pose estimation in particular for
non-frontal views (see also Figure 7). In addition, the expression
template mesh generated during preprocessing much more closely
matches the geometry of the user, which further improves track-
ing accuracy. Figure 11 shows difficult tracking configurations and
provides an indication of the limits of our algorithm.

Animation Prior. Figure 12 studies the effectiveness of our prob-
abilistic tracking algorithm when varying the amount of training
data used for the reconstruction. The figure illustrates that if the
training data does not contain any sequences that are sufficiently
close to the captured performance, the reconstruction can differ
substantially from the acquired data. With more training data, the

vey fast motion

input data tracked
expression model

Figure 11: Difficult tracking configurations. Right: despite the
occlusions by the hands, our algorithm successfully tracks the rigid
motion and the expression of the user. Left: with more occlusion or
very fast motion, tracking can fail.

tracked model more closely matches the performing user. What the
prior achieves in any case is that the reconstructed pose is plau-
sible, even if not necessarily close to the input geometrically (see
also Figure 8). We argue that this is typically much more tolerable
than generating unnatural or even physically impossible poses that
could severely degrade the visual perception of the avatar. In addi-
tion, our approach is scalable in the sense that if the reconstructed
animation does not well represent certain expressions of the user,
we can manually correct the sequence using standard blendshape
animation tools and add the corrected sequence to the training data
set. This allows to successively improve the animation prior in a
bootstrapping manner. For the temporal window Xn used in the
animation prior, we found a window size of 3 ≤ n ≤ 5 to yield
good results in general. Longer temporal spans raise the dimen-
sionality and lead to increased temporal smoothing. If the window
is too small, temporal coherence is reduced and discontinuities in
the tracking data can lead to artifacts.

Limitations. The resolution of the acquisition system limits the
amount of geometric and motion detail that can be tracked for each
user, hence slight differences in expressions will not be captured
adequately. This limitation is aggravated by the wide-angle lens
of the Kinect installed to enable full-body capture, which confines
the face region to about 160 × 160 pixels or less than 10% of the
total image area. As a result, our system cannot recover small-scale
wrinkles or very subtle movements. We also currently do not model
eyes, teeth, tongue, or hair.

In our current implementation, we require user support during pre-
processing in the form of manual markup of lip and eye features
to register the generic template with the recorded training poses
(see Figure 5). In future work, we want to explore the potential of
generic active appearance models similar to [Cootes et al. 2001] to
automate this step of the offline processing pipeline as well.

While offering many advantages as discussed in Section 1.2, the
blendshape representation also has an inherent limitation: The
number of blendshapes is a tradeoff between expressiveness of the
model and suitability for tracking. Too few blendshapes may re-
sult in user expressions that cannot be represented adequately by
the pose space of the model. Introducing additional blendshapes
to the rig can circumvent this problem, but too many blendshapes
may result in a different issue: Since blendshapes may become ap-
proximately linearly dependent, there might not be a unique set of
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Figure 12: Effect of different amounts of training data on the per-
formance of the tracking algorithm. We successively delete blend-
shapes from the input animation sequences, which removes entire
portions of the expression space. With only 25% of the blendshapes
in the training data the expressions are not reconstructed correctly.

blendshape weights for a given expression. This can potentially re-
sult in unstable tracking due to overfitting of the noisy data. While
the prior prevents this instability, a larger number of blendshapes re-
quires a larger training database and negatively affects performance.

6 Conclusion

We have demonstrated that high-quality performance-driven fa-
cial animation in realtime is possible even with a low-cost, non-
intrusive, markerless acquisition system. We show the potential of
our system for applications in human interaction, live virtual TV
shows, and computer gaming.

Robust realtime tracking is achieved by building suitable user-
specific blendshape models and exploiting the different character-
istics of the acquired 2D image and 3D depth map data for regis-
tration. We found that learning the dynamic expression space from
existing animations is essential. Combining these animation priors
with effective geometry and texture registration in a single MAP es-
timation is our key contribution to achieve robust tracking even for
highly noisy input data. While foreseeable technical advances in
acquisition hardware will certainly improve data quality in coming
years, numerous future applications, e.g. in multi-people tracking,
acquisition with mobile devices, or performance capture in diffi-
cult lighting conditions, will produce even worse data and will thus
put even higher demands on robustness. Our algorithm provides a
systematic framework for addressing these challenging problems.

We believe that our system enables a variety of new applications
and can be the basis for substantial follow-up research. We cur-
rently focus on facial acquisition and ignore other important as-
pects of human communication, such as hand gestures, which pose
interesting technical challenges due to complex occlusion patterns.
Enhancing the tracking performance using realtime speech analy-
sis, or integrating secondary effects such as simulation of hair are
further areas of future research that could help increase the realism
of the generated virtual performances. More fundamentally, being
able to deploy our system at a massive scale can enable interesting
new research in human communication and paves the way for new
interaction metaphors in performance-based game play.
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Appendix

We derive the gradients for the optimization of Equation 13. The
energy terms for geometry registration Egeo and optical flow Eim
can both be written in the form

f(x) =
||Ax− b||2

2σ2
(17)

hence the gradients can easily be computed analytically as

∂f(x)

∂x
=
AT (Ax− b)

σ2
. (18)

The prior term is of the form

Eprior = − ln

K∑
k=1

πkN (x, Xn|µk,Σk), (19)

where Σk is the covariance matrix. The Gaussians
N (x, Xn|µk,Σk) model the combined distribution of the
current blendshape vector x ∈ Rm and the n previous vectors Xn,
hence the Σk are matrices of dimension (n + 1)m × (n + 1)m.
Since we are only interested in the gradient with respect to x, we
can discard all components that do not depend on this variable. We
split the mean vectors as µk = (µ1

k, µ
n
k ), corresponding to x and

Xn, respectively. We can write the inverse of Σk as

Σ−1
k =

 Ak Bk

Ck Dk

 =

 (m×m) (m× nm)

(nm×m) (nm× nm)

 (20)

with Bk = CT
k . We then obtain for the gradient of the prior energy

term
∂Eprior

∂x
= (21)∑K

k=1 πkN (x, Xn|µk,Σk)[(x− µ1
k)TAk + (Xn − µn

k )TCk]∑K
k=1 πkN (x, Xn|µk,Σk)

.

The complete gradient is the sum of the three energy gradients de-
rived above

g(x) =
∂Egeo

∂x
+
∂Eim

∂x
+
∂Eprior

∂x
. (22)
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