
ShapeOp - A Robust and Extensible Geometric
Modelling Paradigm

Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker,
Mark Pauly

Abstract We present ShapeOp, a robust and extensible geometric modelling
paradigm. ShapeOp builds on top of the state-of-the-art physics solver (Bouaziz
et al 2014). We discuss the main theoretical advantages of the underlying solver and
how this influences our modelling paradigm. We provide an efficient open-source
C++ implementation (www.shapeop.org) together with scripting interfaces to enable
ShapeOp in Rhino/Grasshopper and potentially other tools. This implementation can
also act as a template for future integration of computer graphics research. To evalu-
ate the potential of ShapeOp we present various examples using our implementation
and discuss potential implications on the design process.

Key words: Modelling and Design of Behaviour

Mario Deuss
École Polytechnique Fédérale de Lausanne, Switzerland. e-mail: mario.deuss@epfl.ch

Anders Holden Deleuran
CITA, Royal Danish Academy of Fine Arts, School of Architecture, Copenhagen, Denmark. e-mail:
adel@kadk.dk

Sofien Bouaziz
École Polytechnique Fédérale de Lausanne, Switzerland. e-mail: sofien.bouaziz@epfl.ch

Bailin Deng
École Polytechnique Fédérale de Lausanne, Switzerland. e-mail: bailin.deng@epfl.ch

Daniel Piker
Robert McNeel & Associates, London, United Kingdom.e-mail: danielpiker@gmail.com

Mark Pauly
École Polytechnique Fédérale de Lausanne, Switzerland. e-mail: mark.pauly@epfl.ch

1

http://www.shapeop.org
mario.deuss@epfl.ch
adel@kadk.dk
sofien.bouaziz@epfl.ch
bailin.deng@epfl.ch
danielpiker@gmail.com
mark.pauly@epfl.ch


2 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

1 Introduction

Under the well established geometric modelling paradigms such as constructive solid
geometry or spline-based modelling, polygonal mesh modelling yields a good trade-
off between expressibility - its many degrees of freedom allow to approximate an
arbitrary design - and computational effort - its inherent linear interpolation reduces
mathematical complexity. This has led to the development of various form-finding
and modelling tools for the exploration of shape spaces of polygonal meshes. In our
context we consider a shape space as a set of all designs that respect given geometric
constraints dictated by aesthetic, fabrication and cost requirements. See Fig. 6 in
(Bouaziz et al 2012) for an example of a shape space.

Shape space exploration is typically facilitated by an optimization algorithm that
negotiates a large number of complex and possibly conflicting constraints to satisfy
the design goals. Numerical solvers for constraint satisfaction therefore play a funda-
mental role in shape exploration environments. A number of requirements on these
solvers are essential for an effective design process, such as numerical robustness,
computational efficiency, flexibility to handle a diverse set of design constraints, and
extensibility to adapt to new design environments.

Existing shape exploration methods are often restricted by inherent limitations of
their optimization approach. They might be tailored to a specific set of constraints,
for example planarity of polygons, which can limit design flexibility. Some of them
exhibit numerical instabilities or slow convergence, which makes interactive mod-
elling cumbersome. Last but not least, they are often closed, monolithic software,
which makes adaptations or extensions in new design tasks difficult. We propose a
new computational approach to geometric modelling and design that alleviates these
limitations.

We adopt the physics solver proposed in (Bouaziz et al 2014) that integrates a
variety of constraints, dynamics and handle-based shape space exploration, and add
projective constraints described in (Bouaziz et al 2012). We refer to the combination
as ShapeOp. In this paper we evaluate the potential of ShapeOp for design in a
number of examples using Rhino/Grasshopper as a graphical user interface. We also
discuss and provide our implementation of ShapeOp, which effectively bridges the
gap between computer graphics research and practical computational design, and
acts as an open-source template for making research available. ShapeOp can also act
as a building block for algorithms exploring further aspects of the shape space, e.g.
adaptive meshing, evolutionary optimization and automatic constraint selection. The
contribution of this paper is three-fold:

1. We propose ShapeOp, a state-of-the-art unified and extensible constraint solver
based on the latest research in computer science, and make it accessible to the
architectural modelling community.



ShapeOp - A Robust and Extensible Geometric Modelling Paradigm 3

2. We describe and provide an efficient C++ open-source implementation of ShapeOp
and an integration into Rhino/Grasshopper using Python/ctypes.

3. We highlight design applications and demonstrate the extensibility of ShapeOp in
various examples.

2 Related Work

The two papers (Bouaziz et al 2012) and (Bouaziz et al 2014) provide a thorough
discussion about previous work related to ShapeOp. In the following, we focus on
related work in the domain of constraint optimization and form-finding.

For computational design, numerical optimization is a fundamental tool as it
allows multiple requirements to be incorporated in the design process. For example,
in architectural geometry, design shapes are often optimized according to certain
geometric constraints that correspond to fabrication requirements (Pottmann et al
2015). Typically, a non-linear least squares problem is formulated, with each residual
term corresponding to one constraint, and solved using standard solvers such as
Gauss-Newton.

Numerical optimizations as discussed above can be time-consuming, due to the
need for evaluating the Jacobian and solving a different linear system in each it-
eration of the solver (Nocedal and Wright 2006). In comparison, each iteration of
ShapeOp only involves parallel evaluation of projection operators, as well as the
solution of a pre-factorized linear system. Recently, Tang et al (2014) propose a
form-finding technique for polyhedral meshes, with much better performance than
classical non-linear least squares formulations. However, their approach still relies
on solving different linear systems in each iteration, resulting in poor performance
for meshes with more than a few thousand vertices. On the contrary, the fixed linear
system in ShapeOp makes it suitable even for large models.

For form-finding, one popular approach is to model the shape as a system of
nodes subject to internal and external forces, and to compute the final shape as an
equilibrium state of the system (Day 1965; Kilian and Ochsendorf 2005; Attar et al
2009; Senatore and Piker 2015). For example, Kilian and Ochsendorf (2005) use
particle-spring systems for finding structural forms composing only axial forces.
Using an implicit Runge-Kutta solver for computing the equilibrium state, their
method allows the user to interact with the simulation while it is running. Such force-
based approach is also adopted in Kangaroo, a live physics engine built on top of
Grasshopper (Piker 2013). By modelling geometric constraints as forces, Kangaroo
can perform not only form-finding and physics simulation, but also constraint solving
and optimization, making it a popular tool among architects.



4 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

Although such force systems are intuitive to set up, it is challenging to simulate
their behavior in an efficient, accurate, and stable way (Witkin and Baraff 1997).
Implicit solvers allow for a large time step and require fewer iterations, but each
iteration can be quite costly to compute since it requires solving a system of algebraic
equations. Also, adding new forces requires the derivation of a Jacobian, making
them more difficult to extend. Explicit solvers involve lower computational cost
for each iteration, but require smaller step sizes to produce stable results, which
can result in a large number of iterations. For example, one issue of Kangaroo as
presented in (Piker 2013) is that the simulation can explode for highly stiff problems,
since such problems require a step size much smaller than the default value; as a
result, it is difficult to compute a shape that satisfies the given constraints exactly,
because this will require large forces for the constraints and lead to very stiff systems.

Unlike such force-based approaches, ShapeOp computes the equilibrium state
of a system by minimizing a potential energy that incorporates physical forces as
well as geometric constraints. Using the carefully designed numerical solver in
ShapeOp, a stable solution can be computed in a small number of iterations with
low computational cost, achieving better stability and efficiency than force-based
solvers. Another benefit of ShapeOp is that it is fully open-source, with bindings for
many languages including C, C++, C#, Java, and Python. This makes it easy to use
ShapeOp from different programming environments, and to extend and adapt the
codes according to specific needs.

Fig. 1 A quad mesh constrained to consist of squares illustrating the ShapeOp solver. Left: Initial
configuration. Middle: Local step - Projecting each quad onto its closest square. Right: Global step
- Joining the individual projections by a global minimization. The resulting mesh is then used as
initial configuration and the solver iterates.



ShapeOp - A Robust and Extensible Geometric Modelling Paradigm 5

3 Solver

ShapeOp is a physics engine as well as an optimization tool, designed for a set
of points that are subject to physical and geometric constraints. In dynamic mode
ShapeOp simulates physics by preserving momentum. In static mode ShapeOp opti-
mizes for an equilibrium solution, which converges considerably faster due to the
absence of oscillations induced by momentum.

For constrained optimization, ShapeOp adopts the iterative solver of (Bouaziz et al
2014), which models physical potentials as well as geometric constraints including
the ones presented in (Bouaziz et al 2012) in a unified manner. Each iteration of the
solver consists of a local step and a global step (see Fig. 1):

Local Step A candidate shape is computed for each set of points that are commonly
influenced by a constraint. For a geometric constraint, this amounts to fitting to the
points a shape that satisfies the constraint. For a physical constraint, this reduces
to finding the closest point positions that have zero physical potential value.

Global Step The candidate shapes computed in the local step are incompatible. The
global step solves for a new set of consistent point positions such that each set of
points subject to a common constraint are as close as possible to the corresponding
candidate shape (see Fig. 1 right).

By repeating the above steps, the overall constraint violation is decreased in each
iteration, and the mesh converges to a shape that satisfies all physical and geometric
constraints as much as possible. Moreover, each iteration can be run very efficiently:
in the local step different constraints can be handled in parallel, while in the global
step we only need to solve a linear system with a fixed matrix.

For dynamics simulation, ShapeOp uses the implicit Euler integration scheme
from (Bouaziz et al 2014), where at each integration step the physical and geometric
constraints are resolved using the above local-global solver. Thanks to the efficiency
of the local-global solver, ShapeOp benefits from the stability of implicit integration,
with significantly lower computational cost than traditional implicit Euler solvers.
ShapeOp also allows defining external forces such as wind and gravity. For more
information, please refer to the paper (Bouaziz et al 2014).

4 Projections

Central to the constrained optimization solver in ShapeOp are the so-called projection
operators, which are used to compute the candidate shapes in the local step. Specif-
ically, given a set of points that are subject to a constraint, the projection operator
finds the closest point positions that satisfy the constraint. A new constraint can be



6 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

added easily to ShapeOp, as long as its projection operator is provided. No changes
to global step of the solver are necessary to add a constraint.

A simple example of a constraint is the closeness constraint: It is satisfied if the
constrained point x coincides with a prescribed position c. Since the only way to
satisfy the closeness constraint is by setting x equal to c , the projection P(·) simply
is given by P(x) = c. The documentation of ShapeOp also provides a step-by-step
tutorial on an orientation constraint, from formulation to implementation. See Table
1 for all constraints implemented in ShapeOp.

Table 1 Constraints implemented in ShapeOp.

Constraint Description

Edge, Triangle,
Tetrahedron Strain

Bounds the strain with respect to its initial configuration (Bouaziz et al
2014, § 5.1).

Area, Volume Bounds the area (volume) of a triangle (tetrahedron) (Bouaziz et al 2014,
§ 5.2).

Bending Bounds the change in mean-curvature (Bouaziz et al 2014, § 5.4).
Closeness Constrains a point to a prescribed position.
Line, Plane, Circle,
Sphere, Rectangle,
Parallelogram

Constrains points to a lie on a geometric primitive (Bouaziz et al 2012,
§ 3).

Uniform Laplacian Constrains a point to the average of its neighbors (Bouaziz et al 2012, § 4).
Uniform Laplacian
of Deformation

Constrains a deformation vector with respect to the initial position to be the
average of its neighboring deformation vectors (Bouaziz et al 2012, § 4).

Similarity Constrains points to be similar (related by a rigid motion and uniform
scaling) to one of the prescribed set of points. The similarity constraint
automatically selects the closest of the prescribed sets of points to project
to at each iteration (Bouaziz et al 2012, § 3.2).

Rigid This constraint is equivalent to Similarity, only that it does not allow for
uniform scaling (Bouaziz et al 2012, § 3.2).

Angle Bounds the angle formed by three points (Deng et al 2015, § 3.3.2).

While many of the constraints intuitively apply to specific primitives, some of
them can be applied to an arbitrary set of points defining novel shape spaces. For
example, the circle constraint was often applied to all quads of a mesh because such
circular meshes have desirable offset properties (Pottmann et al 2007). However, it
can also be applied to each grid line of a quad mesh, defining an interesting shape
space as illustrated in Fig. 5. Also note that the ShapeOp solver has no explicit
knowledge of a mesh, but only of a list of points. This allows to apply ShapeOp to any
set of points, e.g. mixing different geometric primitives such as splines, tetrahedral
meshes, Bézier patches or triangle soups, that are parametrized by point positions.



ShapeOp - A Robust and Extensible Geometric Modelling Paradigm 7

5 Implementation

Our implementation of ShapeOp is distributed as a header-only, C++ library. While
it is possible to develop C++ plugins for computational design environments this
requires a larger and substantially more involved development investment than what
is offered by higher level programming languages provided in .NET compliant CAD
environments such as Rhino 3D and Revit. Here languages such as C#, VB and
Python make development of computational design models fast, responsive, and
interchangeable.

Solver
Constraint
Force

API
GrasshopperC-types

SWIG C#, Java, ...

GHPythonC++ C

libShapeOp bindings

Fig. 2 Schematic overview of our implementation of ShapeOp.

Our implementation can be conceptually divided into two components: The
core library libShapeOp with various bindings, and applications which
use libShapeOp. The core library contains the abstract C++-classes Solver,
Constraint and Force, and many classes deriving from and implementing
them. The C-API provides an interface using C only, which simplifies calling
libShapeOp from other code or programs considerably. ShapeOp also provides
everything necessary to use SWIG (www.swig.org), a software development tool that
can generate a multitude of bindings for libShapeOp. The applications contain
the Grasshopper definitions using libShapeOp. The definitions use GhPython
(www.food4rhino.com/project/ghpython) to enable Python in scripting components.
Inside the component we use Python’s ctypes to directly call libShapeOp.

There are six ShapeOp Grasshopper components in the current release. The func-
tionality of each is implemented in a Python script. The ShapeOp Constraint
Solver (SOSolver) is the central component and is the only one that calls the
libShapeOp library. It sends points and constraint signatures to the library and
retrieves the result. A constraint signature contains all the necessary information to
setup a constraint: The constraint type represented by a string; the indices of points to
be constrained with respect to the global list of points; the weight of this constraint;
the scalars, a list of floating point numbers encoding additional settings of the con-
straint. ShapeOp ConstraintSignature (SOCSig) constructs the constraint
signatures. Constraint signatures are implemented using a Python dictionary, so they
could also be created by custom python components other than SOCSig.

http://www.swig.org
http://www.food4rhino.com/project/ghpython


8 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

Fig. 3 The Grasshopper definition used for the hanging cloth example seen in Fig. 4.

6 Rhino/GhPython Implementation Examples

In Figs. 4 to 11, we provide some examples of using ShapeOp in Rhino/GhPython
for different applications, including physics simulation, constrained modelling, ratio-
nalization, and form-finding.

7 Design Process

We believe that ShapeOp can have a considerable impact on a design process in
various ways. In interactive modelling tools the graphical user interface often cost
non-negligible fraction of the execution time, in particular on large data. Since
ShapeOp is built modularly, it can be run independently of any user interface. Also,
due to the C/C++ implementation, ShapeOp runs natively and is heavily optimized
by compilers and parallelization with OpenMP (www.openmp.org). ShapeOp can
therefore potentially handle huge models.

In ShapeOp the global and local steps are both numerically stable least-squares
problems, implying that the overall method is also stable and robust. Also, many
constraints such as the plane constraint only concern the relative arrangement of
points and stay satisfied after applying a translation to all points. ShapeOp utilizes
this in the global step by implicitly solving for the translations for each constraint
independently. This allows for constrained points to move arbitrarily far and greatly
increases convergence speed.

http://www.openmp.org


ShapeOp - A Robust and Extensible Geometric Modelling Paradigm 9

Fig. 4 Use of ShapeOp for physics simulation of elastic materials. A hanging cloth is modelled using
edge strain and bending constraints. The three vertices are anchored using closeness constraints
and all points are subjected to a gravity load. Left: The input mesh. Middle: The constrained mesh
at the first solve iteration in which the anchors are immediately moved very far apart. Right: The
constrained mesh after 100 iterations with the anchor point moved back to their starting positions.
Top: Wireframe rendering with the edges coloured by their strain (red = high, blue = low). Bottom:
Shaded rendering. The example demonstrates both the stability and the fast convergence of the
solver.

Fig. 5 Use of ShapeOp for constrained modelling of a shell with rational geometric properties.
The vertices on the parameter lines of a quad-mesh are constrained to always lie on a circular
arc using the circle constraint. Each face is constrained towards being square using the similarity
constraint. Five vertices are anchored to different positions than their initial positions, enabling shape
exploration. Left to right: 1) The input mesh, the face used for similarity and vectors visualizing
start/end positions for the anchors. 2) The constrained mesh after 10 iterations. 3) The constrained
mesh after 300 iterations. 4) The constrained mesh with circles drawn through each of the parameter
line vertices (Red = Line vertices distance to circle is large, Blue = Line vertices distance to circle is
small).



10 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

Fig. 6 Use of ShapeOp for rationalizing an existing geometry. Each face of the quad-mesh is
constrained towards being planar using the plane constraint. Each vertex is constrained to its initial
position using the closeness constraint by a small weight to maintain the shape of the mesh. Left:
Input mesh. Middle: The constrained mesh after 10 iterations. Right: The constrained mesh after
200 iterations. Top: Shaded rendering. Bottom: Planarity analysis rendering (Red = Low planarity,
Green = High planarity).

Fig. 7 Use of ShapeOp for constrained modelling of box shape with multiple rigid shape targets.
A quad-mesh box is anchored at the vertices on two sides of the box. The image sequence shows
the vertices on one side being pulled away over time. As this occurs each mesh face attempts to
project itself onto one of the three shape targets below the box. The solver has been initialized using
dynamics leading to the rippling effect as the faces switch their projection targets from short to
medium to long. This projection type is enabled using the rigid constraint.



ShapeOp - A Robust and Extensible Geometric Modelling Paradigm 11

Fig. 8 Use of ShapeOp for constrained modelling of a shell with topologically different shape
targets. A planar mesh composed of both triangles and quads is anchored at four vertices using the
closeness constraint. Using the similarity constraint, each face is constrained towards their initial
shape i.e. an equilateral triangle or a square. 1) The input mesh. 2) The mesh after 1 iteration. 3)
After 100 iterations. 4) After 500 iterations.

Fig. 9 Use of ShapeOp for constrained modelling of a randomly generated quad-mesh with multiple
constraints as design drivers. The example demonstrates the effect of applying the same constraints
on meshes with different resolutions. It uses three primary constraints: 1) Limit the internal angles
of each face to be within 80 and 110 degrees, 2) The boundaries of the mesh should lie on circles, 3)
Each face should preserve its area. Additionally, a Laplacian of displacement constraint is added
which smoothens out the mesh while maintaining the shape, and a bending constraint is added
which ensures that face-face angles do not become too acute. The color code is a based on scoring
system: The internal angles for each face are calculated. If an angle is within the desirable range it
is scored 0, else 1. The scores are added for each face, best face score is 0 (Dark green) worst is 4
(Dark red).



12 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

Fig. 10 Use of ShapeOp for funicular form finding. A hexagonal quad-mesh is anchored at each
corner and subjected to an inverse gravity load. In this image sequence the only other constraint is
that each edge should be 2.0 units long. This is implemented using the edge strain constraint. 1) The
input mesh. 2) The constrained mesh after 1 iteration. 3) The constrained mesh after 10 iterations.
4) The constrained mesh after reaching equilibrium at iteration 1000.

Fig. 11 Use of ShapeOp for funicular form finding under fabrication constraints. Demonstrates the
effect of combining different constraints: Desired edge length, planarity of faces and desired range
of internal face angles. All images show the constrained mesh at equilibrium. From left to right:
1) Shaded rendering. 2) Edge length deviation from desired length. 3) Face angles deviation from
desired angle range. 4) Face Planarity Deviation (Red = High deviation, Green = Low deviation).
Row 1: The mesh with edge strain constraints. Row 2: The mesh with edge strain and internal mesh
face angles constraints. Row 3: The mesh with edge strain and face planarity constraints. Row 4:
The mesh with edge strain, internal mesh face angles and face planarity constraints.



ShapeOp - A Robust and Extensible Geometric Modelling Paradigm 13

8 Future Work

As future work we plan to further explore the combination of continuous and discrete
constraints. It is a common feature of many design problems to have some design
components that can only be selected from a finite set of choices. Unfortunately, such
a finite set can be too restrictive to preserve the aesthetic quality of the design. In this
case, enhancing the optimization to automatically detect a sparse set of constraints
that needs to be violated in order to better preserve the design intent would lead to a
much richer design exploration solution.

9 Conclusion

We believe that ShapeOp is a promising candidate for state-of-the-art computational
geometric design and evaluate its potential in this paper. We explain the theoretical
advantages over existing methods, and present the implementation as a simple,
fast and extensible C++ library (www.shapeop.org). Our examples use the scripted
grasshopper components provided with ShapeOp to highlight its practical importance.

Acknowledgements We thank the reviewers for their valuable comments. This work has been
supported by Swiss National Science Foundation (SNSF) grant 200021 137626 and the Danish
Council for Independent Research (DFF). This research has received funding from the European
Research Council under the European Unions Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement 257453, ERC Starting Grant COSYM.

References

Attar R, Aish R, Stam J, Brinsmead D, Tessier A, Glueck M, Khan A (2009) Physics-
based generative design. In: CAAD Futures Conference, pp 231–244

Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M (2012) Shape-up: Shaping
discrete geometry with projections. Computer Graphics Forum 31(5):1657–1667

Bouaziz S, Martin S, Liu T, Kavan L, Pauly M (2014) Projective dynamics: Fusing
constraint projections for fast simulation. ACM Trans Graph 33(4):154:1–154:11

Day AS (1965) An introduction to dynamic relaxation. The Engineer 219:218221
Deng B, Bouaziz S, Deuss M, Kaspar A, Schwartzburg Y, Pauly M (2015) Interactive

design exploration for constrained meshes. Computer-Aided Design 61(0):13–23
Kilian A, Ochsendorf J (2005) Particle-spring systems for structural form finding.

Journal of the International Association for Shell and Spatial Structures 46(2):77–
84

Nocedal J, Wright S (2006) Numerical Optimization, 2nd edn. Springer Series in
Operations Research and Financial Engineering, Springer-Verlag New York

http://www.shapeop.org


14 M. Deuss, A. H. Deleuran, S. Bouaziz, B. Deng, D. Piker, M. Pauly

Piker D (2013) Kangaroo: Form finding with computational physics. Architectural
Design 83(2):136–137

Pottmann H, Liu Y, Wallner J, Bobenko A, Wang W (2007) Geometry of multi-layer
freeform structures for architecture. ACM Trans Graph 26(3)

Pottmann H, Eigensatz M, Vaxman A, Wallner J (2015) Architectural geometry.
Computers & Graphics 47(0):145 – 164

Senatore G, Piker D (2015) Interactive real-time physics: An intuitive approach to
form-finding and structural analysis for design and education. Computer-Aided
Design 61(0):32–41

Tang C, Sun X, Gomes A, Wallner J, Pottmann H (2014) Form-finding with polyhe-
dral meshes made simple. ACM Trans Graph 33(4):70:1–70:9

Witkin A, Baraff D (1997) Physically based modeling: Principles and practice.
Siggraph ’97 Course notes


	ShapeOp - A Robust and Extensible Geometric Modelling Paradigm
	Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker, Mark Pauly
	Introduction
	Related Work
	Solver
	Projections
	Implementation
	Rhino/GhPython Implementation Examples
	Design Process
	Future Work
	Conclusion
	References



